• 1.

    Banz AC, Gottfried SD. Peritoneopericardial diaphragmatic hernia: a retrospective study of 31 cats and eight dogs. J Am Anim Hosp Assoc 2010;46(6):398404.

    • Search Google Scholar
    • Export Citation
  • 2.

    Evans SM, Biery DN. Congenital peritoneopericardial diaphragmatic hernia in the dog and cat: a literature review and 17 additional case histories. Vet Radiol Ultrasound 1980;21(3):108116.

    • Search Google Scholar
    • Export Citation
  • 3.

    Reimer SB, Kyles AE, Filipowicz DE, et al. Long-term outcome of cats treated conservatively or surgically for peritoneopericardial diaphragmatic hernia: 66 cases (1987–2002). J Am Vet Med Assoc 2004;224(5):728732.

    • Search Google Scholar
    • Export Citation
  • 4.

    Burns CG, Bergh MS, McLoughlin MA. Surgical and nonsurgical treatment of peritoneopericardial diaphragmatic hernia in dogs and cats: 58 cases (1999–2008). J Am Vet Med Assoc 2013;242(5):643650.

    • Search Google Scholar
    • Export Citation
  • 5.

    Liptak JM, Bissett SA, Allan GS, et al. Hepatic cysts incarcerated in a peritoneopericardial diaphragmatic hernia. J Feline Med Surg 2002;4(2):123125.

    • Search Google Scholar
    • Export Citation
  • 6.

    Less RD, Bright JM, Orton EC. Intrapericardial cyst causing cardiac tamponade in a cat. J Am Anim Hosp Assoc 2000;36(2):115119.

  • 7.

    Rendano VT, Parker RB. Polycystic kidneys and peritoneopericardial diaphragmatic hernia in the cat: a case report. J Small Anim Pract 1976;17(7):479485.

    • Search Google Scholar
    • Export Citation
  • 8.

    Scruggs SM, Bright JM. Chronic cardiac tamponade in a cat caused by an intrapericardial biliary cyst. J Feline Med Surg 2010;12(4):338340.

    • Search Google Scholar
    • Export Citation
  • 9.

    Morgan KRS, Singh A, Giuffrida MA, et al. Outcome after surgical and conservative treatments of canine peritoneopericardial diaphragmatic hernia: a multi-institutional study of 128 dogs. Vet Surg 2020;49(1):138145.

    • Search Google Scholar
    • Export Citation
  • 10.

    Lamb CR, Mason GD, Wallace MK. Ultrasonographic diagnosis of peritoneopericardial diaphragmatic hernia in a Persian cat. Vet Rec 1989;125(8):186.

    • Search Google Scholar
    • Export Citation
  • 11.

    Hay WH, Woodfield JA, Moon MA. Clinical, echocardiographic, and radiographic findings of peritoneopericardial diaphragmatic hernia in two dogs and a cat. J Am Vet Med Assoc 1989;195(9):12451248.

    • Search Google Scholar
    • Export Citation
  • 12.

    Bellah JR, Whitton DL, Ellison GW, et al. The surgical correction of concomitant cranioventral abdominal wall, caudal sternal, diaphragmatic, and pericardial defects in dogs. J Am Vet Med Assoc 1989;195:17221726.

    • Search Google Scholar
    • Export Citation
  • 13.

    Neiger R. Peritoneopericardial diaphragmatic hernia in cats. Compend Contin Educ Pract Vet 1996;18(5):461468.

  • 14.

    Margolis C, Zakošek Pipan M, Demchur J, et al. Congenital peritoneopericardial diaphragmatic hernia in a family of Persian cats. JFMS Open Rep 2018;4(2):2055116918804305.

    • Search Google Scholar
    • Export Citation
  • 15.

    Phillips H, Corrie J, Engel DM, et al. Clinical findings, diagnostic test results, and treatment outcome in cats with hiatal hernia: 31 cases (1995–2018). J Vet Intern Med 2019;33(5):19701976.

    • Search Google Scholar
    • Export Citation
  • 16.

    Gunay-Aygun M. Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet 2009;151C(4):296306.

  • 17.

    Madhivanan K, Aguilar RC. Ciliopathies: the trafficking connection. Traffic 2014;15(10):10311056.

  • 18.

    Rohatgi R, Snell WJ. The ciliary membrane. Curr Opin Cell Biol 2010;22(4):541546.

  • 19.

    Fabris L, Fiorotto R, Spirli C, et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019;16(8):497511.

    • Search Google Scholar
    • Export Citation
  • 20.

    Pillai S, Center SA, McDonough SP, et al. Ductal plate malformation in the liver of boxer dogs: clinical and histological features. Vet Pathol 2016;53:602613.

    • Search Google Scholar
    • Export Citation
  • 21.

    Center SA. Ductal plate malformations. In: Proceedings of the American College of Veterinary Internal Medicine Forum. American College of Veterinary Internal Medicine; 2017:792797.

    • Search Google Scholar
    • Export Citation
  • 22.

    Masyuk AI, Masyuk TV, LaRusso NF. Cholangiocyte primary cilia in liver health and disease. Dev Dyn 2008;237(8):20072012.

  • 23.

    Kawasaki T, Carmichael FJ, Saldivia V, et al. Relationship between portal venous and hepatic arterial blood flows: spectrum of response. Am J Physiol 1990;259(6 pt 1):G1010G1018.

    • Search Google Scholar
    • Export Citation
  • 24.

    Gunay-Aygun M, Gahl WA, Heller T. Congenital hepatic fibrosis overview. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews. University of Washington; 1993–2021:141.

    • Search Google Scholar
    • Export Citation
  • 25.

    Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology 1992;16(4):10691083.

    • Search Google Scholar
    • Export Citation
  • 26.

    Alsomali MI, Yearsley MM, Levin DM. Diagnosis of congenital hepatic fibrosis in adulthood fibrosis. Am J Clin Pathol 2020;153(1):119125.

    • Search Google Scholar
    • Export Citation
  • 27.

    Sato K, Sakai M, Hayakawa S, et al. Gallbladder agenesis in 17 dogs: 2006–2016. J Vet Intern Med 2018;32(1):188194.

  • 28.

    Lyons LA, Biller DS, Erdman CA, et al. Feline polycystic kidney disease mutation identified in PKD1. J Am Soc Nephrol 2004;15(10):25482555.

  • 29.

    Eaton KA, Biller DS, DiBartola SP, et al. Autosomal dominant polycystic kidney disease in Persian and Persian-cross cats. Vet Pathol 1997;34(2):117126.

    • Search Google Scholar
    • Export Citation
  • 30.

    Drögemüller M, Jagannathan V, Welle MM, et al. Congenital hepatic fibrosis in the Franches-Montagnes horse is associated with the polycystic kidney and hepatic disease 1 (PKHD1) gene. PLoS One. 2014;9(10):e110125.

    • Search Google Scholar
    • Export Citation
  • 31.

    Stayner C, Poole CA, McGlashan SR, et al. An ovine hepatorenal fibrocystic model of a Meckel-like syndrome associated with dysmorphic primary cilia and TMEM67 mutations. Sci Rep. 2017;7(1):1601.

    • Search Google Scholar
    • Export Citation
  • 32.

    Dillard KJ, Hytönen MK, Fischer D, et al. A splice site variant in INPP5E causes diffuse cystic renal dysplasia and hepatic fibrosis in dogs. PLoS One 2018;13(9):e0204073.

    • Search Google Scholar
    • Export Citation
  • 33.

    Kaplan JL, Gunther-Harrington CT, Sutton JS, et al. Multiple midline defects identified in a litter of Golden Retrievers following gestational administration of prednisone and doxycycline: a case series. BMC Vet Res 2018;14(1):8695.

    • Search Google Scholar
    • Export Citation
  • 34.

    Eipel C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 2010;16(48):60466057.

    • Search Google Scholar
    • Export Citation
  • 35.

    Lanier VC Jr, Buchanan RD, Foster JH. Hepatic morphologic changes following end-to-side portocaval shunt in dogs. Am Surg 1968;34(3):185195.

    • Search Google Scholar
    • Export Citation
  • 36.

    Schermerhorn T, Center SA, Dykes NL, et al. Characterization of hepatoportal microvascular dysplasia in a kindred of cairn terriers. J Vet Intern Med 1996;10(4):219230.

    • Search Google Scholar
    • Export Citation
  • 37.

    Baade S, Aupperle H, Grevel V, et al. Histopathological and immunohistochemical investigations of hepatic lesions associated with congenital portosystemic shunt in dogs. J Comp Pathol 2006;134(1):8090.

    • Search Google Scholar
    • Export Citation
  • 38.

    Lee KC, Winstanley A, House JV, et al. Association between hepatic histopathologic lesions and clinical findings in dogs undergoing surgical attenuation of a congenital portosystemic shunt: 38 cases (2000–2004). J Am Vet Med Assoc 2011;239(5):638645.

    • Search Google Scholar
    • Export Citation
  • 39.

    Sobczak-Filipiak M, Szarek J, Badurek I, et al. Retrospective liver histomorphological analysis in dogs in instances of clinical suspicion of congenital portosystemic shunt. J Vet Res 2019;63(2):243249.

    • Search Google Scholar
    • Export Citation
  • 40.

    Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol 1985;249(5 pt 1):G549G556.

    • Search Google Scholar
    • Export Citation
  • 41.

    Terada T, Ishida F, Nakanuma Y. Vascular plexus around intrahepatic bile ducts in normal livers and portal hypertension. J Hepatol 1989;8(2):139149.

    • Search Google Scholar
    • Export Citation
  • 42.

    Desmet VJ. Ludwig symposium on biliary disorders—part I. Pathogenesis of ductal plate abnormalities. Mayo Clin Proc 1998;73(1):8089.

    • Search Google Scholar
    • Export Citation
  • 43.

    West AB, Chatila R. Differential diagnosis of bile duct injury and ductopenia. Semin Diagn Pathol 1998;15(4):270284.

  • 44.

    Schotanus BA, van den Ingh TSGAM, Penning LC, et al. Cross-species immunohistochemical investigation of the activation of the liver progenitor cell niche in different types of liver disease. Liver Int 2009;29(8):12411252.

    • Search Google Scholar
    • Export Citation
  • 45.

    Ijzer J, Schotanus BA, Vander Borght S, et al. Characterisation of the hepatic progenitor cell compartment in normal liver and in hepatitis: an immunohistochemical comparison between dog and man. Vet J 2010;184(3):308314.

    • Search Google Scholar
    • Export Citation
  • 46.

    Yonem O, Bayraktar Y. Clinical characteristics of Caroli’s syndrome. World J Gastroenterol 2007;13(13):19341937.

  • 47.

    Suchy FJ. Caroli disease. UpToDate. Accessed June 16, 2020. https://www.uptodate.com/contents/caroli-disease.

  • 48.

    McKenna SC, Carpenter JL. Polycystic disease of the kidney and liver in the Cairn Terrier. Vet Pathol 1980;17(4):436442.

  • 49.

    McAloose D, Casal M, Patterson DF, et al. Polycystic kidney and liver disease in two related West Highland White Terrier litters. Vet Pathol 1998;35(1):7781.

    • Search Google Scholar
    • Export Citation
  • 50.

    Bosje JT, van den Ingh TS, van der Linde-Sipman JS. Polycystic kidney and liver disease in cats. Vet Q 1998;20(4):136139.

  • 51.

    Raynaud P, Tate J, Callens C, et al. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology 2011;53(6):19591966.

    • Search Google Scholar
    • Export Citation
  • 52.

    Drenth JP, Chrispijn M, Bergmann C. Congenital fibrocystic liver diseases. Best Pract Res Clin Gastroenterol 2010;24(5):573584.

  • 53.

    Kerkar N, Norton K, Suchy FJ. The hepatic fibrocystic diseases. Clin Liver Dis 2006;10(1):5571.

  • 54.

    Veland IR, Awan A, Pedersen LB. Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 2009;111(3):3953.

    • Search Google Scholar
    • Export Citation
  • 55.

    Wills ES, Roepman R, Drenth JPH. Polycystic liver disease: ductal plate malformation and the primary cilium. Trends Mol Med 2014;20(5):261270.

    • Search Google Scholar
    • Export Citation
  • 56.

    Carpentier R, Suñer RE, van Hul N, et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 2011;141(4):14321438.

    • Search Google Scholar
    • Export Citation
  • 57.

    Lee-Law PY, van de Laarschot LFM, Banales JM, et al. Genetics of polycystic liver diseases. Curr Opin Gastroenterol. 2019;35(2):6572.

  • 58.

    Terada T, Nakanuma Y. Detection of apoptosis and expression of apoptosis-related proteins during human intrahepatic bile duct development. Am J Pathol 1995;146(1):6774.

    • Search Google Scholar
    • Export Citation
  • 59.

    Gunay-Aygun M, Tuchman M, Font-Montgomery E, et al. PKHD1 sequence variations in 78 children and adults with autosomal recessive polycystic kidney disease and congenital hepatic fibrosis. Mol Genet Metab 2010;99(2):160173.

    • Search Google Scholar
    • Export Citation
  • 60.

    Yasoshima M, Sato Y, Furubo S, et al. Matrix proteins of basement membrane of intrahepatic bile ducts are degraded in congenital hepatic fibrosis and Caroli’s disease. J Pathol 2009;217(3):442451.

    • Search Google Scholar
    • Export Citation
  • 61.

    Wong MY, McCaughan GW, Strasser SI. An update on the pathophysiology and management of polycystic liver disease. Expert Rev Gastroenterol Hepatol 2017;11(6):569581.

    • Search Google Scholar
    • Export Citation
  • 62.

    Xu J, Liu X, Koyama Y, et al. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 2014;5:167.

    • Search Google Scholar
    • Export Citation
  • 63.

    Locatelli L, Cadamuro M, Spirlì C, et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 2016;63(3):965982.

    • Search Google Scholar
    • Export Citation
  • 64.

    Tsunoda T, Kakinuma S, Miyoshi M, et al. Loss of fibrocystin promotes interleukin-8-dependent proliferation and CTGF production of biliary epithelium. J Hepatol 2019;71(1):143152.

    • Search Google Scholar
    • Export Citation
  • 65.

    Harada K, Sato Y, Ikeda H, et al. Epithelial-mesenchymal transition induced by biliary innate immunity contributes to the sclerosing cholangiopathy of biliary atresia. J Pathol 2009;217(5):654664.

    • Search Google Scholar
    • Export Citation
  • 66.

    Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004;15(1):112.

    • Search Google Scholar
    • Export Citation
  • 67.

    Narkewicz MR, Kasaragod A, Lucia MS, et al. Connective tissue growth factor expression is increased in biliary epithelial cells in biliary atresia. J Pediatr Surg 2005;40(11):17211725.

    • Search Google Scholar
    • Export Citation
  • 68.

    Sun T, Annunziato S, Tchorz JS. Hepatic ductular reaction: a double-edged sword. Aging (Albany NY) 2019;11(21):92239224.

  • 69.

    Fabris L, Brivio S, Cadamuro M, et al. Revisiting epithelial-to-mesenchymal transition in liver fibrosis: clues for a better understanding of the “reactive” biliary epithelial phenotype. Stem Cells Int 2016;2016:2953727.

    • Search Google Scholar
    • Export Citation
  • 70.

    Desmet VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch 2011;458(3):251259.

    • Search Google Scholar
    • Export Citation
  • 71.

    Sato K, Marzioni M, Meng F, et al. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 2019;69(1):420430.

    • Search Google Scholar
    • Export Citation
  • 72.

    Turányi E, Dezsö K, Csomor J. Immunohistochemical classification of ductular reactions in human liver. Histopathology 2010;57(4):607614.

    • Search Google Scholar
    • Export Citation
  • 73.

    Strazzabosco M, Fabris L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol 2012;56(5):11591170.

  • 74.

    Funaki N, Sasano H, Shizawa S, et al. Apoptosis and cell proliferation in biliary atresia. J Pathol 1998;186(4):429433.

  • 75.

    Aller M-A, Arias J-L, García-Domínguez, et al. Experimental obstructive cholestasis: the wound-like inflammatory liver response. Fibrogenesis Tissue Repair 2008;1(1):6.

    • Search Google Scholar
    • Export Citation
  • 76.

    Fauza DO, Wilson JM. Congenital diaphragmatic hernia and associated anomalies: their incidence, identification, and impact on prognosis. J Pediatr Surg 1994;29(8):11131117.

    • Search Google Scholar
    • Export Citation
  • 77.

    Noden DM, de Lahunta A. Malformations of the diaphragm. In: Noden DM, de Lahunta A, eds. The Embryology of Domestic Animals: Developmental Mechanisms and Malformations. The Williams & Wilkins Co; 1985:288290.

    • Search Google Scholar
    • Export Citation
  • 78.

    Swain JM, Klaus A, Achem SR, et al. Congenital diaphragmatic hernia in adults. Semin Laparosc Surg 2001;8(4):246255.

  • 79.

    Bolton GR, Ettinger S, Roush JC II. Congenital peritoneopericardial diaphragmatic hernia in a dog. J Am Vet Med Assoc 1969;155(5):723730.

    • Search Google Scholar
    • Export Citation
  • 80.

    Clinton JM. A case of congenital periocardio-peritoneal diaphragmatic communication in a dog. J Am Vet Radiol Soc 1967;8:5760.

  • 81.

    Baker GJ, Williams CS. Diaphragmatic pericardial hernia in the dog. Vet Rec 1966;78(17):578583.

  • 82.

    Reed CA. Pericardio-peritoneal hernia in mammals, with description of a case in the domestic cat. Anat Rec 1951;110(1):113119.

  • 83.

    Mercadier M, Chigot LP, Clot JP, et al. Caroli’s disease. World J Surg 1984;8(1):2229.

Relationships between congenital peritoneopericardial diaphragmatic hernia or congenital central diaphragmatic hernia and ductal plate malformations in dogs and cats

View More View Less
  • 1 Frpm the Departments of Clinical Sciences (Seibert, Center, Randolph, ML Miller, Flanders, Harvey) and Biomedical Sciences (AD Miller, Choi), College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Abstract

OBJECTIVE

To characterize the association between peritoneopericardial diaphragmatic hernia (PPDH) or congenital central diaphragmatic hernia (CCDH) and ductal plate malformations (DPMs) in dogs and cats.

ANIMALS

18 dogs and 18 cats with PPDH or CCDH and 19 dogs and 18 cats without PPDH or CCDH.

PROCEDURES

Evaluation of clinical details verified PPDH or CCDH and survival times. Histologic features of nonherniated liver samples were used to categorize DPM. Immunohistochemical staining for cytokeratin-19 distinguished bile duct profiles per portal tract and for Ki-67–assessed cholangiocyte proliferation. Histologic features of herniated liver samples from PPDH or CCDH were compared with those of pathological controls (traumatic diaphragmatic hernia, n = 6; liver lobe torsion, 6; ischemic hepatopathy, 2).

RESULTS

DPM occurred in 13 of 18 dogs with the proliferative-like phenotype predominating and in 15 of 18 cats with evenly distributed proliferative-like and Caroli phenotypes. Congenital hepatic fibrosis DPM was noted in 3 dogs and 2 cats and renal DPM in 3 dogs and 3 cats. No signalment, clinical signs, or clinicopathologic features discriminated DPM. Kaplan Meier survival curves were similar in dogs and cats. Bile duct profiles per portal tract in dogs (median, 5.0; range, 1.4 to 100.8) and cats (6.6; 1.9 to 11.0) with congenital diaphragmatic hernias significantly exceeded those in healthy dogs (1.4; 1.2 to 1.6) and cats (2.3; 1.7 to 2.6). Animals with DPM lacked active cholangiocyte proliferation. Histologic features characterizing malformative bile duct profiles yet without biliary proliferation were preserved in herniated liver lobes in animals with DPM.

CONCLUSIONS AND CLINICAL RELEVANCE

DPM was strongly associated with PPDH and CCDH. Because DPM can impact health, awareness of its coexistence with PPDH or CCDH should prompt biopsy of nonherniated liver tissue during surgical correction of PPDH and CCDH.

Abstract

OBJECTIVE

To characterize the association between peritoneopericardial diaphragmatic hernia (PPDH) or congenital central diaphragmatic hernia (CCDH) and ductal plate malformations (DPMs) in dogs and cats.

ANIMALS

18 dogs and 18 cats with PPDH or CCDH and 19 dogs and 18 cats without PPDH or CCDH.

PROCEDURES

Evaluation of clinical details verified PPDH or CCDH and survival times. Histologic features of nonherniated liver samples were used to categorize DPM. Immunohistochemical staining for cytokeratin-19 distinguished bile duct profiles per portal tract and for Ki-67–assessed cholangiocyte proliferation. Histologic features of herniated liver samples from PPDH or CCDH were compared with those of pathological controls (traumatic diaphragmatic hernia, n = 6; liver lobe torsion, 6; ischemic hepatopathy, 2).

RESULTS

DPM occurred in 13 of 18 dogs with the proliferative-like phenotype predominating and in 15 of 18 cats with evenly distributed proliferative-like and Caroli phenotypes. Congenital hepatic fibrosis DPM was noted in 3 dogs and 2 cats and renal DPM in 3 dogs and 3 cats. No signalment, clinical signs, or clinicopathologic features discriminated DPM. Kaplan Meier survival curves were similar in dogs and cats. Bile duct profiles per portal tract in dogs (median, 5.0; range, 1.4 to 100.8) and cats (6.6; 1.9 to 11.0) with congenital diaphragmatic hernias significantly exceeded those in healthy dogs (1.4; 1.2 to 1.6) and cats (2.3; 1.7 to 2.6). Animals with DPM lacked active cholangiocyte proliferation. Histologic features characterizing malformative bile duct profiles yet without biliary proliferation were preserved in herniated liver lobes in animals with DPM.

CONCLUSIONS AND CLINICAL RELEVANCE

DPM was strongly associated with PPDH and CCDH. Because DPM can impact health, awareness of its coexistence with PPDH or CCDH should prompt biopsy of nonherniated liver tissue during surgical correction of PPDH and CCDH.

Contributor Notes

Address correspondence to Dr. Center (sac6@cornell.edu).