• 1. Hammerberg C, Schurig GG, Ochs DL. Immunodeficiency in young pigs. Am J Vet Res 1989; 50: 868874.

  • 2. Wilson RA, Zolnai A, Rudas P, et al. T-cell subsets in blood and lymphoid tissues obtained from fetal calves, maturing calves, and adult bovine. Vet Immunol Immunopathol 1996; 53: 4960.

    • Search Google Scholar
    • Export Citation
  • 3. Hein WR. Ontogeny of T cells. In: Goddeeris BML, Morrison WI, eds. Cell-mediated immunity in ruminants. Boca Raton, Fla: CRC Press, 1994; 1936.

    • Search Google Scholar
    • Export Citation
  • 4. Cortese VS. Neonatal immunology. Vet Clin North Am Food Anim Pract 2009; 25: 221227.

  • 5. Chernishov VP, Slukvin II. Mucosal immunity of the mammary gland and immunology of mother/newborn interrelation. Arch Immunol Ther Exp (Warsz) 1990; 38: 145164.

    • Search Google Scholar
    • Export Citation
  • 6. Nickerson SC. Immune mechanisms of the bovine udder: an overview. J Am Vet Med Assoc 1985; 187: 4145.

  • 7. Norcross NL. Secretion and composition of colostrum and milk. J Am Vet Med Assoc 1982; 181: 10571060.

  • 8. Reber AJ, Lockwood A, Hippen AR, et al. Colostrum induced phenotypic and trafficking changes in maternal mononuclear cells in a peripheral blood leukocyte model for study of leukocyte transfer to the neonatal calf. Vet Immunol Immunopathol 2006; 109: 139150.

    • Search Google Scholar
    • Export Citation
  • 9. Harp JA, Nonnecke BJ. Regulation of mitogenic responses by bovine milk leukocytes. Vet Immunol Immunopathol 1986; 11: 215224.

  • 10. Ho PC, Lawton JW. Human colostral cells: phagocytosis and killing of E coli and C albicans. J Pediatr 1978; 93: 910915.

  • 11. Parmely MJ, Reath DB, Beer AE, et al. Cellular immune responses of human milk T lymphocytes to certain environmental antigens. Transplant Proc 1977; 9: 14771483.

    • Search Google Scholar
    • Export Citation
  • 12. Donovan DC, Reber AJ, Gabbard JD, et al. Effect of maternal cells transferred with colostrum on cellular responses to pathogen antigens in neonatal calves. Am J Vet Res 2007; 68: 778782.

    • Search Google Scholar
    • Export Citation
  • 13. Besser TE, Gay CC. The importance of colostrum to the health of the neonatal calf. Vet Clin North Am Food Anim Pract 1994; 10: 107117.

    • Search Google Scholar
    • Export Citation
  • 14. Mohr JA, Leu R, Mabry W. Colostral leukocytes. J Surg Oncol 1970; 2: 163167.

  • 15. Newby TJ, Stokes CR, Bourne FJ. Immunological activities of milk. Vet Immunol Immunopathol 1982; 3: 6794.

  • 16. Watson DL. Immunological functions of the mammary gland and its secretion—comparative review. Aust J Biol Sci 1980; 33: 403422.

    • Search Google Scholar
    • Export Citation
  • 17. Gay CC, Anderson N, Fisher N, et al. Gamma globulin levels and neonatal mortality in market calves. Vet Rec 1965; 77: 148149.

  • 18. Logan EF, Stenhouse A, Ormrod DJ, et al. The role of colostral immunoglobulins in intestinal immunity to enteric colibacillosis in the calf. Res Vet Sci 1974; 17: 280301.

    • Search Google Scholar
    • Export Citation
  • 19. Campbell SG, Siegel MJ, Knowlton BJ. Sheep immunoglobulins and their transmission to the neonatal lamb. N Z Vet J 1977; 25: 361365.

    • Search Google Scholar
    • Export Citation
  • 20. Belknap EB, Baker JC, Patterson JS, et al. The role of passive immunity in bovine respiratory syncytial virus–infected calves. J Infect Dis 1991; 163: 470476.

    • Search Google Scholar
    • Export Citation
  • 21. Liebler-Tenorio EM, Riedel-Caspari G, Pohlenz JF. Uptake of colostral leukocytes in the intestinal tract of newborn calves. Vet Immunol Immunopathol 2002; 85: 3340.

    • Search Google Scholar
    • Export Citation
  • 22. Le Jan C. Cellular components of mammary secretions and neonatal immunity: a review. Vet Res 1996; 27: 403417.

  • 23. Riedel-Caspari G. The influence of colostral leukocytes on the course of an experimental Escherichia coli infection and serum antibodies in neonatal calves. Vet Immunol Immunopathol 1993; 35: 275288.

    • Search Google Scholar
    • Export Citation
  • 24. Goto M, Maruyama M, Kitadate K, et al. Detection of interleukin-1 beta in sera and colostrum of dairy cattle and in sera of neonates. J Vet Med Sci 1997; 59: 437441.

    • Search Google Scholar
    • Export Citation
  • 25. Van Kampen C, Mallard BA, Wilkie BN. Adhesion molecules and lymphocyte subsets in milk and blood of periparturient Holstein cows. Vet Immunol Immunopathol 1999; 69: 2332.

    • Search Google Scholar
    • Export Citation
  • 26. Riollet C, Rainard P, Poutrel B. Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv Exp Med Biol 2000; 480: 247258.

    • Search Google Scholar
    • Export Citation
  • 27. Hagiwara K, Kataoka S, Yamanaka H, et al. Detection of cytokines in bovine colostrum. Vet Immunol Immunopathol 2000; 76: 183190.

  • 28. Rogers Brambell FW. The transmission of passive immunity from mother to young. Amsterdam: North Holland Publishing Co, 1970.

  • 29. Kmetz M, Dunne HW, Schultz RD. Leukocytes as carriers in the transmission of bovine leukemia: invasion of the digestive tract of the newborn by ingested, cultured, leukocytes. Am J Vet Res 1970; 31: 637641.

    • Search Google Scholar
    • Export Citation
  • 30. Beer AE, Billingham RE, Head JR. Natural transplantation of leukocytes during suckling. Transplant Proc 1975; 7: 399402.

  • 31. Weiler IJ, Hickler W, Sprenger R. Demonstration that milk cells invade the suckling neonatal mouse. Am J Reprod Immunol 1983; 4: 9598.

    • Search Google Scholar
    • Export Citation
  • 32. Schnorr KL, Pearson LD. Intestinal absorption of maternal leucocytes by newborn lambs. J Reprod Immunol 1984; 6: 329337.

  • 33. Tuboly S, Bernáth S, Glávits R, et al. Intestinal absorption of colostral lymphocytes in newborn lambs and their role in the development of immune status. Acta Vet Hung 1995; 43: 105115.

    • Search Google Scholar
    • Export Citation
  • 34. Jain L, Vidyasagar D, Xanthou M, et al. In vivo distribution of human milk leucocytes after ingestion by newborn baboons. Arch Dis Child 1989; 64: 930933.

    • Search Google Scholar
    • Export Citation
  • 35. Tuboly S, Bernáth S, Glávits R, et al. Intestinal absorption of colostral lymphoid cells in newborn piglets. Vet Immunol Immunopathol 1988; 20: 7585.

    • Search Google Scholar
    • Export Citation
  • 36. Williams PP. Immunomodulating effects of intestinal absorbed maternal colostral leukocytes by neonatal pigs. Can J Vet Res 1993; 57: 18.

    • Search Google Scholar
    • Export Citation
  • 37. Le Jan C. Epithelial cells in sow mammary secretions. Adv Exp Med Biol 1995; 371A:233234.

  • 38. Lee WT, Vitetta ES. Memory T cells are anergic to the superantigen staphylococcal enterotoxin B. J Exp Med 1992; 176: 575579.

  • 39. Swain SL, Bradley LM, Croft M, et al. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol Rev 1991; 123: 115144.

    • Search Google Scholar
    • Export Citation
  • 40. Springer TA. Adhesion receptors of the immune system. Nature 1990; 346: 425434.

  • 41. Aldridge BM, McGuirk SM, Clark RJ, et al. Denaturing gradient gel electrophoresis: a rapid method for differentiating BoLA-DRB3 alleles. Anim Genet 1998; 29: 389394.

    • Search Google Scholar
    • Export Citation
  • 42. Reber AJ, Donovan DC, Gabbard J, et al. Transfer of maternal colostral leukocytes promotes development of the neonatal immune system Part II. Effects on neonatal lymphocytes. Vet Immunol Immunopathol 2008; 123: 305313.

    • Search Google Scholar
    • Export Citation
  • 43. Taylor BC, Dellinger JD, Cullor JS, et al. Bovine milk lymphocytes display the phenotype of memory T cells and are predominantly CD8+. Cell Immunol 1994; 156: 245253.

    • Search Google Scholar
    • Export Citation
  • 44. Langel SN, Wark WA, Garst SN, et al. Effect of feeding whole compared with cell-free colostrum on calf immune status: the neonatal period. J Dairy Sci 2015; 98: 37293740.

    • Search Google Scholar
    • Export Citation
  • 45. Brandon MR, Watson DL, Lascelles AK. The mechanism of transfer of immunoglobulin into mammary secretion of cows. Aust J Exp Biol Med Sci 1971; 49: 613623.

    • Search Google Scholar
    • Export Citation
  • 46. Lascelles AK, McDowell GH. Localized humoral immunity with particular reference to ruminants. Transplant Rev 1974; 19: 170208.

  • 47. Smith KL, Muir LA, Ferguson LC, et al. Selective transport of IgGl into the mammary gland: role of estrogen and progesterone. J Dairy Sci 1971; 54: 18861894.

    • Search Google Scholar
    • Export Citation
  • 48. Murphy FA, Aalund O, Osebold JW, et al. Gamma globulins of bovine lacteal secretions. Arch Biochem Biophys 1964; 108: 230239.

  • 49. Pierce AE, Feinstein A. Biophysical and immunological studies on bovine immune globulins with evidence for selective transport within the mammary gland from maternal plasma to colostrum. Immunology 1965; 8: 106123.

    • Search Google Scholar
    • Export Citation
  • 50. Piepers S, De Vliegher S, Demeyere K, et al. Technical note: flow cytometric identification of bovine milk neutrophils and simultaneous quantification of their viability. J Dairy Sci 2009; 92: 626631.

    • Search Google Scholar
    • Export Citation
  • 51. Meganck V, Goddeeris BM, Stuyven E, et al. Development of a method for isolating bovine colostrum mononuclear leukocytes for phenotyping and functional studies. Vet J 2014; 200: 294298.

    • Search Google Scholar
    • Export Citation
  • 52. Ogra SS, Weintraub D, Ogra PL. Immunologic aspects of human colostrum and milk. III. Fate and absorption of cellular and soluble components in the gastrointestinal tract of the newborn. J Immunol 1977; 119: 245248.

    • Search Google Scholar
    • Export Citation
  • 53. Ellis JA, Hassard LE, Cortese VC, et al. Effects of perinatal vaccination on humoral and cellular immune responses in cows and young calves. J Am Vet Med Assoc 1996; 208: 393400.

    • Search Google Scholar
    • Export Citation
  • 54. Ostensson K, Hageltorn M, Aström G. Differential cell counting in fraction-collected milk from dairy cows. Acta Vet Scand 1988; 29: 493500.

    • Search Google Scholar
    • Export Citation
  • 55. Park YH, Fox LK, Hamilton MJ, et al. Bovine mononuclear leukocyte subpopulations in peripheral blood and mammary gland secretions during lactation. J Dairy Sci 1992; 75: 9981006.

    • Search Google Scholar
    • Export Citation
  • 56. Beer AE, Billingham RE, Head J. The immunologic significance of the mammary gland. J Invest Dermatol 1974; 63: 6574.

  • 57. Wyatt CR, Barrett WJ, Brackett EJ, et al. Phenotypic comparison of ileal intraepithelial lymphocyte populations of suckling and weaned calves. Vet Immunol Immunopathol 1999; 67: 213222.

    • Search Google Scholar
    • Export Citation
  • 58. McBride JW, Corstvet RE, Dietrich MA, et al. Memory and CD8+ are the predominant bovine bronchoalveolar lymphocyte phenotypes. Vet Immunol Immunopathol 1997; 58: 5562.

    • Search Google Scholar
    • Export Citation
  • 59. Asai K, Kai K, Rikiishi H, et al. Variation in CD4+ T and CD8+ T lymphocyte subpopulations in bovine mammary gland secretions during lactating and non-lactating periods. Vet Immunol Immunopathol 1998; 65: 5161.

    • Search Google Scholar
    • Export Citation
  • 60. Ohtsuka H, Terasawa S, Watanabe C, et al. Effect of parity on lymphocytes in peripheral blood and colostrum of healthy Holstein dairy cows. Can J Vet Res 2010; 74: 130135.

    • Search Google Scholar
    • Export Citation
  • 61. Ayoub IA, Yang TJ. Age-dependent changes in peripheral blood lymphocyte subpopulations in cattle: a longitudinal study. Dev Comp Immunol 1996; 20: 353363.

    • Search Google Scholar
    • Export Citation
  • 62. Yang TJ, Ayoub IA, Rewinski MJ. Lactation stage–dependent changes of lymphocyte subpopulations in mammary secretions: inversion of CD4+/CD8+ T cell ratios at parturition. Am J Reprod Immunol 1997; 37: 378383.

    • Search Google Scholar
    • Export Citation
  • 63. Kelly AL, Tiernan D, O'Sullivan C, et al. Correlation between bovine milk somatic cell count and polymorphonuclear leukocyte level for samples of bulk milk and milk from individual cows. J Dairy Sci 2000; 83: 300304.

    • Search Google Scholar
    • Export Citation
  • 64. Lee CS, Wooding FB, Kemp P. Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretions, colostrum and milk from normal cows. J Dairy Res 1980; 47: 3950.

    • Search Google Scholar
    • Export Citation
  • 65. Leitner G, Shoshani E, Krifucks O, et al. Milk leucocyte population patterns in bovine udder infection of different aetiology. J Vet Med B Infect Dis Vet Public Health 2000; 47: 581589.

    • Search Google Scholar
    • Export Citation
  • 66. Leitner G, Chaffer M, Krifucks O, et al. Milk leucocyte populations in heifers free of udder infection. J Vet Med B Infect Dis Vet Public Health 2000; 47: 133138.

    • Search Google Scholar
    • Export Citation
  • 67. Paape MJ, Tucker HA. Somatic cell content variation in fraction-collected milk. J Dairy Sci 1966; 49: 265267.

  • 68. Sordillo LM, Redmond MJ, Campos M, et al. Cytokine activity in bovine mammary gland secretions during the periparturient period. Can J Vet Res 1991; 55: 298301.

    • Search Google Scholar
    • Export Citation
  • 69. Hagiwara K, Domi M, Ando J. Bovine colostral CD8-positive cells are potent IFN-gamma-producing cells. Vet Immunol Immunopathol 2008; 124: 9398.

    • Search Google Scholar
    • Export Citation
  • 70. Yamanaka H, Hagiwara K, Kirisawa R, et al. Transient detection of proinflammatory cytokines in sera of colostrum-fed newborn calves. J Vet Med Sci 2003; 65: 813816.

    • Search Google Scholar
    • Export Citation
  • 71. Gonzalez DD, Rimondi A, Perez Aguirreburualde MS, et al. Quantitation of cytokine gene expression by real time PCR in bovine milk and colostrum cells from cows immunized with a bovine rotavirus VP6 experimental vaccine. Res Vet Sci 2013; 95: 703708.

    • Search Google Scholar
    • Export Citation
  • 72. Reber AJ, Hippen AR, Hurley DJ. Effects of the ingestion of whole colostrum or cell-free colostrum on the capacity of leukocytes in newborn calves to stimulate or respond in one-way mixed leukocyte cultures. Am J Vet Res 2005; 66: 18541860.

    • Search Google Scholar
    • Export Citation
  • 73. LaMotte GB, Eberhart RJ. Blood leukocytes, neutrophil phagocytosis, and plasma corticosteroids in colostrum-fed and colostrum-deprived calves. Am J Vet Res 1976; 37: 11891193.

    • Search Google Scholar
    • Export Citation
  • 74. Stieler A, Bernardo BS, Donovan GA. Neutrophil and monocyte function in neonatal dairy calves fed fresh or frozen colostrum. Int J Appl Res Vet Med 2012; 10: 328334.

    • Search Google Scholar
    • Export Citation
  • 75. Concha C, Holmberg O, Morein B. Characterization and response to mitogens of mammary lymphocytes from the bovine dry-period secretion. J Dairy Res 1980; 47: 305311.

    • Search Google Scholar
    • Export Citation
  • 76. Barta O, Oyekan PP. Lymphocyte transformation test in veterinary clinical immunology. Comp Immunol Microbiol Infect Dis 1981; 4: 209221.

    • Search Google Scholar
    • Export Citation
  • 77. Goddeeris BM, Morrison WI, Naessens J, et al. The bovine autologous mixed leukocyte reaction: a proliferative response of non-T cells under the control of monocytes. Immunobiology 1987; 176: 4762.

    • Search Google Scholar
    • Export Citation
  • 78. Ayanwale LF, Kaneene JB, Johnson DW, et al. In vitro stimulation of bovine milk lymphocytes standardization of the assay for bovine brucellosis. Comp Immunol Microbiol Infect Dis 1981; 4: 343352.

    • Search Google Scholar
    • Export Citation
  • 79. Elsken LA, Nonnecke BJ. In vitro transformation of lymphocytes from blood and milk of cows with subclinical paratuberculosis. Am J Vet Res 1986; 47: 15131516.

    • Search Google Scholar
    • Export Citation
  • 80. Merilaeinen V, Maeyrae A, Korhonen H, et al. Cells in bovine colostrum and properties of lymphocyte population. Fin J Dairy Sci 1979; 37: 4558.

    • Search Google Scholar
    • Export Citation
  • 81. Nonnecke BJ, Kehrli ME Jr. Isolation of mononuclear cells from bovine milk by continuous-flow and density gradient centrifugation: response of cells to mitogens. Am J Vet Res 1985; 46: 12591262.

    • Search Google Scholar
    • Export Citation
  • 82. Schore CE, Osburn BI, Jasper DE, et al. B and T lymphocytes in the bovine mammary gland: rosette formation and mitogen response. Vet Immunol Immunopathol 1981; 2: 561569.

    • Search Google Scholar
    • Export Citation
  • 83. Smith JW, Schultz RD. Mitogen- and antigen-responsive milk lymphocytes. Cell Immunol 1977; 29: 165173.

  • 84. Nonnecke BJ, Elsken LA, Kehrli ME Jr. Local and systemic immune response in the cow after intramammary vaccination during lactation. Vet Immunol Immunopathol 1986; 11: 3144.

    • Search Google Scholar
    • Export Citation
  • 85. Archambault D, Morin G, Elazhary Y. Influence of immunomodulatory agents on bovine humoral and cellular immune responses to parenteral inoculation with bovine rotavirus vaccines. Vet Microbiol 1988; 17: 323334.

    • Search Google Scholar
    • Export Citation
  • 86. Duhamel GE, Bernoco D, Davis WC, et al. Distribution of T and B lymphocytes in mammary dry secretions, colostrum and blood of adult dairy cattle. Vet Immunol Immunopathol 1987; 14: 101122.

    • Search Google Scholar
    • Export Citation
  • 87. Wilson RA, Linn JA, Eberhart RJ. A study of bovine T-cell subsets in the blood and mammary gland secretions during the dry period. Vet Immunol Immunopathol 1986; 13: 151164.

    • Search Google Scholar
    • Export Citation
  • 88. Drew PA, Petrucco OM, Shearman DJ. Inhibition by colostrum of the responses of peripheral blood mononuclear cells to mitogens. Aust J Exp Biol Med Sci 1983; 61: 451460.

    • Search Google Scholar
    • Export Citation
  • 89. Drew PA, Petrucco OM, Shearman DJ. A factor present in human milk, but not colostrum, which is cytotoxic for human lymphocytes. Clin Exp Immunol 1984; 55: 437443.

    • Search Google Scholar
    • Export Citation
  • 90. Reber AJ, Donovan DC, Gabbard J, et al. Transfer of maternal colostral leukocytes promotes development of the neonatal immune system I. Effects on monocyte lineage cells. Vet Immunol Immunopathol 2008; 123: 186196.

    • Search Google Scholar
    • Export Citation
  • 91. Hein WR, Mackay CR. Prominence of gamma delta T cells in the ruminant immune system. Immunol Today 1991; 12: 3034.

  • 92. Nagaeva O, Bondestam K, Olofsson J, et al. An optimized technique for separation of human decidual leukocytes for cellular and molecular analyses. Am J Reprod Immunol 2002; 47: 203212.

    • Search Google Scholar
    • Export Citation
  • 93. Pertoft H. Fractionation of cells and subcellular particles with Percoll. J Biochem Biophys Methods 2000; 44: 130.

  • 94. Schmaltz R, Bhogal B, Wang J, et al. Characterisation of leucocytic somatic cells in bovine milk. Res Vet Sci 1996; 61: 179181.

  • 95. Slade HB, Schwartz SA. Antigen-driven immunoglobulin production by human colostral lymphocytes. Pediatr Res 1989; 25: 295299.

  • 96. Pitt J, Barlow B, Heird WC. Protection against experimental necrotizing enterocolitis by maternal milk. I. Role of milk leukocytes. Pediatr Res 1977; 11: 906909.

    • Search Google Scholar
    • Export Citation
  • 97. Xanthou M. Human milk cells. Acta Paediatr 1997; 86: 12881290.

  • 98. Riedel-Caspari G, Schmidt FW. The influence of colostral leukocytes on the immune system of the neonatal calf. I. Effects on lymphocyte responses. Dtsch Tierarztl Wochenschr 1991; 98: 102107.

    • Search Google Scholar
    • Export Citation
  • 99. Aldridge BM, McGuirk SM, Lunn DP. Effect of colostral ingestion on immunoglobulin-positive cells in calves. Vet Immunol Immunopathol 1998; 62: 5164.

    • Search Google Scholar
    • Export Citation
  • 100. Tizard IR. Schubot RM. Veterinary immunology: an introduction. 7th ed. Philadelphia: WB Saunders Co, 2004.

Advertisement

Bovine colostral cells—the often forgotten component of colostrum

View More View Less
  • 1 From The Virology Institute, CICVyA, INTA Castelar, De las Cabañas y Los Reseros S/N, Hurlingham, 1686, Buenos Aires, Argentina.
  • | 2 From The Virology Institute, CICVyA, INTA Castelar, De las Cabañas y Los Reseros S/N, Hurlingham, 1686, Buenos Aires, Argentina.

Contributor Notes

Address correspondence to Dr. Gonzalez (gonzalez.diegod@inta.gob.ar).