• 1. Schnelle GB. Eczema in dogs—an allergy. North Am Vet 1933; 14:3744.

  • 2. Holmes MA. Philosophical foundations of evidence-based medicine for veterinary clinicians. J Am Vet Med Assoc 2009; 235:10351039.

  • 3. Burns PW. Allergic reactions in dogs. J Am Vet Med Assoc 1933; 83:627634.

  • 4. Pomeroy BS. Allergy and allergic skin reactions in the dog. Cornell Vet 1934; 24:335341.

  • 5. Wittlch FW. Spontaneous allergy (atopy) in the lower animal; seasonal hay fever (fall type) in a dog. J Allergy 1941; 2:247251.

  • 6. Patterson R. Ragweed allergy in the dog. J Am Vet Med Assoc 1959; 135:178180.

  • 7. Patterson R. Investigations of spontaneous hypersensitivity of the dog. J Allergy 1960; 31:351363.

  • 8. Patterson R, Sparks DB. The passive transfer to normal dogs of skin reactivity asthma and anaphylaxis from a dog with spontaneous ragweed pollen hypersensitivity. J Allergy 1962; 88:262288.

    • Search Google Scholar
    • Export Citation
  • 9. Patterson R, Pruzansky JJ, Chang WWY. Spontaneous canine hypersensitivity to ragweed. Characterization of serum factor transferring skin, bronchial and anaphylactic sensitivity. J Immunol 1963; 90:3542.

    • Search Google Scholar
    • Export Citation
  • 10. Schwartzman RM. Atopy in the dog. In: Rook AJ, Walton GS, eds. Comparative physiology and pathology of the skin. Philadelphia: F. A. Davis Co, 1965;557559.

    • Search Google Scholar
    • Export Citation
  • 11. Halliwell REW, Schwartzman RM, Rockey JH. Antigenic relationship between canine and human IgE. Clin Experiment Immunol 1972; 10:399407.

    • Search Google Scholar
    • Export Citation
  • 12. Halliwell REW, Schwartzman RM, Montgomery PC, et al. Physicochemical properties of canine IgE. Transplant Proc 1975; 7:537543.

  • 13. Halliwell REW. The localization of IgE in canine skin: an immunofluorescent study. J Immunol 1973; 110:422430.

  • 14. Baker E. Allergy skin testing in the dog. J Am Vet Med Assoc 1966; 148:11601162.

  • 15. Nesbitt GH. Canine allergic inhalant dermatitis: a review of 230 cases. J Am Vet Med Assoc 1978; 172:5560.

  • 16. Scott DW. Observations on canine atopy. J Am Anim Hosp Assoc 1981; 17:91100.

  • 17. Willemse A, Van den Brom WE. Investigations of the symptomatology and the significance of immediate skin test reactivity in canine atopic dermatitis. Res Vet Sci 1983; 34:261265.

    • Search Google Scholar
    • Export Citation
  • 18. Nesbitt GH, Kedan GS, Cacciolo P. Canine atopy 1. Etiology and diagnosis. Compend Contin Educ Pract Vet 1984; 6:7384.

  • 19. Vollset I. Atopic dermatitis in Norwegian dogs. Nord Vet Med 1985; 35:97106.

  • 20. Koch HJ, Peters S. 207 intracutaneous tests in dogs with suspicion of atopic dermatitis. Kleintierpraxis 1994; 39:2536.

  • 21. Sture GH, Halliwell REW, Thoday KL, et al. Canine atopic disease: the prevalence of positive intradermal skin tests at 2 sites in the north and south of Great Britain. Vet Immunol Immunopathol 1995; 44:293308.

    • Search Google Scholar
    • Export Citation
  • 22. Saridomichelakis MN, Koutinas AF, Gioulekas D, et al. Canine atopic dermatitis in Greece: clinical observations and the prevalence of positive intradermal test reactions in 91 spontaneous cases. Vet Immunol Immunopathol 1999; 69:6173.

    • Search Google Scholar
    • Export Citation
  • 23. August JR. The reaction of canine skin to the intradermal injection of allergenic extracts. J Am Anim Hosp Assoc 1982; 18:157163.

    • Search Google Scholar
    • Export Citation
  • 24. Codner EC, Tinker MK. Reactivity to intradermal injections of extracts of house dust and housedust mite in healthy dogs and dogs suspected of being atopic. J Am Vet Med Assoc 1995; 106:812816.

    • Search Google Scholar
    • Export Citation
  • 25. Tokura Y. Extrinsic and intrinsic types of atopic dermatitis. J Dermatol Sci 2010; 58:17.

  • 26. Park JH, Choi YL, Namkung JH, et al. Characteristics of extrinsic vs. intrinsic atopic dermatitis in infancy: correlations with laboratory variables. Br J Dermatol 2006; 155:778783.

    • Search Google Scholar
    • Export Citation
  • 27. Wüthrich B, Schmid-Grendelmeier P. The atopic eczema/dermatitis syndrome. Epidemiology, natural course, and immunology of the IgE-associated (“extrinsic”) and the nonallergic (“intrinsic”) AEDS. J Investig Allergol Clin Immunol 2003; 13:15.

    • Search Google Scholar
    • Export Citation
  • 28. DeBoer DJ, Hill PB. Serum immunoglobulin E concentrations in West Highland White Terrier puppies do not predict development of atopic dermatitis. Vet Dermatol 1999; 10:275281.

    • Search Google Scholar
    • Export Citation
  • 29. Hill PB, Moriello KA, DeBoer DJ. Concentrations of total serum IgE, IgA, and IgG in atopic and parasitized dogs. Vet Immunol Immunopathol 1995; 44:105113.

    • Search Google Scholar
    • Export Citation
  • 30. DeBoer DJ, Hillier A. The ACVD task force on canine atopic dermatitis (XVI): laboratory evaluation of dogs with atopic dermatitis with serum-based “allergy” tests. Vet Immunol Immunopathol 2001; 81:277287.

    • Search Google Scholar
    • Export Citation
  • 31. Olivry T, DeBoer DJ, Griffin CE, et al. The ACVD task force on canine atopic dermatitis. Vet Immunol Immunopathol 2001; 81:143383.

  • 32. Halliwell R. Revised nomenclature for veterinary allergy. Vet Immunol Immunopathol 2006; 114:207208.

  • 33. Baurecht H, Irvine AD, Novak N, et al. Toward a major risk factor for atopic eczema: meta-analysis of filaggrin polymorphism data. J Allergy Clin Immunol 2007; 120:14061412.

    • Search Google Scholar
    • Export Citation
  • 34. Willemse A, Noordzij A, Van den Brom WE, et al. Allergen-specific IgGd antibodies in dogs with atopic dermatitis as determined by the enzyme linked immunosorbent assay (ELISA). Clin Experiment Immunol 1985; 59:359363.

    • Search Google Scholar
    • Export Citation
  • 35. Lian TM, Halliwell REW. Allergen specific IgE and IgGd antibodies in atopic and normal dogs. Vet Immunol Immunopathol 1998; 66:203223.

    • Search Google Scholar
    • Export Citation
  • 36. Olivry T, Moore PF, Affolter VK, et al. Langerhans’ cell hyperplasia and IgE expression in canine atopic dermatitis. Arch Dermatol Res 1996; 288:579585.

    • Search Google Scholar
    • Export Citation
  • 37. Olivry T, Dunston SM, Murphy KM, et al. Characterization of the inflammatory infiltrate during IgE-mediated late phase reactions in the skin of normal and atopic dogs. Vet Dermatol 2001; 12:4958.

    • Search Google Scholar
    • Export Citation
  • 38. Nimmo Wilke JS, Yager JA, Eyre P, et al. Morphometric analyses of the skin of dogs with atopic dermatitis and correlations with cutaneous and plasma histamine and total serum IgE. Vet Pathol 1990; 27:179186.

    • Search Google Scholar
    • Export Citation
  • 39. Carr MN, Torres SMF, Koch SN, et al. Investigation of the pruritogenic effects of histamine, serotonin, tryptase, substance P and interleukin-2 in healthy dogs. Vet Dermatol 2009; 20:105110.

    • Search Google Scholar
    • Export Citation
  • 40. Nuttall TJ, Lamb JR, Hill PB. Peripheral blood mononuclear cell responses to Dermatophagoides farinae in canine atopic dermatitis. Vet Immunol Immunopathol 2001; 82:273280.

    • Search Google Scholar
    • Export Citation
  • 41. Nuttall TJ, Lamb JR, Hill PB. Peripheral blood mononuclear cell responses to major and minor Dermatophagoides allergens in canine atopic dermatitis. Vet Immunol Immunopathol 2002; 84:143150.

    • Search Google Scholar
    • Export Citation
  • 42. Olivry T, Dean GA, Tompkin MB, et al. Toward a canine model of atopic dermatitis: amplification of cytokine gene transcripts in the skin of atopic dogs. Experiment Dermatol 1999; 8:204211.

    • Search Google Scholar
    • Export Citation
  • 43. Nuttall TJ, Knight PA, McAleese SM, et al. Expression of TH1, TH2 and immunosuppressive cytokine gene transcripts in canine atopic dermatitis. Clin Exp Allergy 2002; 32:789795.

    • Search Google Scholar
    • Export Citation
  • 44. Marsella R, Olivry T, Nicklin C, et al. Pilot investigation of a model for canine atopic dermatitis: environmental house dust mite challenge of high-IgE-producing Beagles, mite hypersensitive dogs with atopic dermatitis and normal dogs. Vet Dermatol 2006; 17:2435.

    • Search Google Scholar
    • Export Citation
  • 45. Marsella R, Olivry T, Maeda S. Cellular and cytokine kinetics after epicutaneous allergen challenge (atopy patch testing) with house dust mites in high-IgE Beagles. Vet Dermatol 2006; 17:111120.

    • Search Google Scholar
    • Export Citation
  • 46. Keitzmann M. Eicosanoid levels in canine inflammatory skin disease. In: Von Tscharner C, Halliwell REW, eds. Advances in veterinary dermatology. Vol 1. London: Bailliere Tindall, 1990;211220.

    • Search Google Scholar
    • Export Citation
  • 47. Samuelsson B. Leukotrienes: mediators of allergic reactions and inflammation. Int Arch Allergy Appl Immunol 1981; 66(suppl 1):98106.

    • Search Google Scholar
    • Export Citation
  • 48. Marsella R, Nicklin CF. Sulphido-leukotriene production from peripheral leukocytes and skin in clinically normal dogs and house dust mite positive atopic dogs. Vet Dermatol 2001; 12:312.

    • Search Google Scholar
    • Export Citation
  • 49. Campbell KL. Clinical use of fatty acid supplements in dogs. Vet Dermatol 1993; 4:167173.

  • 50. Logas D, Kunkle GA. Double-blinded crossover study with marine oil supplementation containing high-dose icosapentaenoic acid for the treatment of canine pruritic skin disease. Vet Dermatol 1994; 5:99104.

    • Search Google Scholar
    • Export Citation
  • 51. Cork MJ, Danby SG, Vasilopoulos Y, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 2009; 129:18921908.

  • 52. Inman AO, Olivry T, Dunston SM, et al. Electron microscopic observations of stratum corneum intercellular lipids in normal and atopic dogs. Vet Pathol 2001; 38:720723.

    • Search Google Scholar
    • Export Citation
  • 53. Marsella R, Samuelson D, Harrington L. Immunohistochemical evaluation of filaggrin polyclonal antibody in atopic and normal Beagles. Vet Dermatol 2009; 20:547553.

    • Search Google Scholar
    • Export Citation
  • 54. Marsella R, Samuelson D. Unraveling the skin barrier: a new paradigm for atopic dermatitis and house dust mites. Vet Dermatol 2009; 20:533540.

    • Search Google Scholar
    • Export Citation
  • 55. Shimada K, Ji-Seon Y, Yoshihara T, et al. Increased transepidermal water loss and decreased ceramides content in lesional and non-lesional skin of dogs with atopic dermatitis. Vet Dermatol 2009; 20:541546.

    • Search Google Scholar
    • Export Citation
  • 56. Reiter LV, Torres SMF, Wertz PW. Characterization and quantification of ceramides in the non-lesional skin of canine patients with atopic dermatitis compared to controls. Vet Dermatol 2009; 20:260266.

    • Search Google Scholar
    • Export Citation
  • 57. Marsella R, Samuelson D, Doerr K. Transmission electron microscopy studies in an experimental model of canine atopic dermatitis. Vet Dermatol 2010; 21:8188.

    • Search Google Scholar
    • Export Citation
  • 58. Hightower K, Marsella R, Creary E, et al. Evaluation of transepidermal water loss in canine atopic dermatitis: a pilot study in Beagle dogs sensitized to house dust mites. Vet Dermatol 2010; 21:8996.

    • Search Google Scholar
    • Export Citation
  • 59. Piekutowska A, Pin D, Rème CA, et al. Effects of a topically applied preparation of epidermal lipids on the stratum corneum barrier of atopic dogs. J Compar Pathol 2008; 138:197203.

    • Search Google Scholar
    • Export Citation
  • 60. Marsella R, Samuelson D, Doerr K. Transmission electron microscopy studies in an experimental model of canine atopic dermatitis. Vet Dermatol 2010; 21:8188.

    • Search Google Scholar
    • Export Citation
  • 61. Werner Y, Lindberg M, Forslind B. Membrane-coating granules in “dry” non-eczematous skin of patients with atopic dermatitis. A quantitative electron microscopic study. Acta Dermatol Venereol 1987; 67:385390.

    • Search Google Scholar
    • Export Citation
  • 62. Fartasch M, Bassukas ID, Diepgen TL. Disturbed extruding mechanism of lamellar bodies in dry non-eczematous skin of atopics. Br J Dermatol 1992; 127:221227.

    • Search Google Scholar
    • Export Citation
  • 63. Macheleidt O, Kaiser HW, Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol 2002; 119:166173.

    • Search Google Scholar
    • Export Citation
  • 64. Hara J, Higuchi K, Okamoto R, et al. High-expression of sphingomyelin deacylase is an important determinant of ceramide deficiency leading to barrier disruption in atopic dermatitis. J Invest Dermatol 2000; 115:406413.

    • Search Google Scholar
    • Export Citation
  • 65. Imokawa G. A possible mechanism underlying the ceramide deficiency in atopic dermatitis: expression of a deacylase enzyme that cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. J Dermatol Sci 2009; 55:19.

    • Search Google Scholar
    • Export Citation
  • 66. Sehra S, Tuana FM, Holbreich M, et al. Scratching the surface: towards understanding the pathogenesis of atopic dermatitis. Crit Rev Immunol 2008; 28:1543.

    • Search Google Scholar
    • Export Citation
  • 67. Cork MJ, Danby SG, Vasilopoulos Y, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 2009; 129:18921908.

  • 68. Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol 2009; 9:437446.

    • Search Google Scholar
    • Export Citation
  • 69. Marsella R, Nicklin C, Lopez J. Studies on the role of routes of allergen exposure in high IgE-producing Beagle dogs sensitized to house dust mites. Vet Dermatol 2006; 17:306312.

    • Search Google Scholar
    • Export Citation
  • 70. Olivry T, Wofford J, Paps J, et al. Stratum corneum removal facilitates experimental sensitization to mite allergens. Vet Dermatol 2011; 22:188196.

    • Search Google Scholar
    • Export Citation
  • 71. Olivry T, Moore PF, Affolter VK, et al. Langerhans cell hyperplasia and IgE expression in canine atopic dermatitis. Arch Dermatol Res 1996; 288:579585.

    • Search Google Scholar
    • Export Citation
  • 72. Olivry T, Naydan DK, Moore PF. Characterization of the cutaneous inflammatory infiltrate in canine atopic dermatitis. Am J Dermatopath 1997; 19:477486.

    • Search Google Scholar
    • Export Citation
  • 73. Yamamoto M, Haruna T, Yasui K, et al. A novel atopic dermatitis model induced by topical application with Dermatophagoides farinae extract in NC/Nga mice. Allergol Int 2007; 56:139148.

    • Search Google Scholar
    • Export Citation
  • 74. Wang G, Savinko T, Wolff H, et al. Repeated epicutaneous exposures to ovalbumin progressively induce atopic dermatitis-like skin lesions in mice. Clin Exp Allergy 2007; 37:151161.

    • Search Google Scholar
    • Export Citation
  • 75. Pucheu-Haston CM, Jackson HA, Olivry T, et al. Epicutaneous sensitization with Dermatophagoides farinae induces generalized allergic dermatitis and elevated mite-specific immunoglobulin E levels in a canine model of atopic dermatitis. Clin Exp Allergy 2008; 38:667679.

    • Search Google Scholar
    • Export Citation
  • 76. McEwan NA, Mellor D, Kalna G. Adherence by Staphylococcus intermedius to canine corneocytes: a preliminary study comparing noninflamed and inflamed atopic canine skin. Vet Dermatol 2006; 17:151154.

    • Search Google Scholar
    • Export Citation
  • 77. Mason IS, Lloyd DH. The role of allergy in the development of canine pyoderma. J Small Anim Pract 1989; 30:216218.

  • 78. Fazakerley J, Nuttall T, Sales D, et al. Staphylococcal colonization of mucosal and lesional skin sites in atopic and healthy dogs. Vet Dermatol 2009; 20:179184.

    • Search Google Scholar
    • Export Citation
  • 79. Simou C, Thoday KL, Forsythe PJ, et al. Adherence of Staphylococcus intermedius to corneocytes of healthy and atopic dogs: effect of pyoderma, pruritus score, treatment and gender. Vet Dermatol 2005; 16:385391.

    • Search Google Scholar
    • Export Citation
  • 80. Hatano Y, Terashi H, Arakawa S, et al. Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by TNF-alpha and IFN-gamma in human epidermis. J Invest Dermatol 2005; 124:786792.

    • Search Google Scholar
    • Export Citation
  • 81. Hill PB, Martin RJ. A review of mast cell biology. Vet Dermatol 1998; 9:145166.

  • 82. Olivry T, Marsella R, Maeda S. Pathogenesis of canine atopic dermatitis: 2004 hypothesis. In: Hillier A, Foster A, Kwochka K, eds. Advances in veterinary dermatology. Vol 5. Oxford: Blackwell Publishing, 2005;1016.

    • Search Google Scholar
    • Export Citation
  • 83. Elias PM. Barrier-repair therapy for atopic dermatitis: corrective lipid biochemical therapy. Expert Rev Dermatol 2008; 3:441452.

    • Search Google Scholar
    • Export Citation
  • 84. Chervet L, Galichet A, McLean WHI, et al. Missing C-terminal filaggrin expression, NFkappaB activation and hyperproliferation identify the dog as a putative model to study epidermal dysfunction in atopic dermatitis. Exp Dermatol 2010; 19:e343e346.

    • Search Google Scholar
    • Export Citation
  • 85. Palmer CN, Irvine AD, Terron-Kwaitkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006; 38:441446.

    • Search Google Scholar
    • Export Citation
  • 86. Irvine AD, McLean WH. Breaking the (un)sound barrier: filaggrin is a major gene for atopic dermatitis. J Invest Dermatol 2006; 126:12001202.

    • Search Google Scholar
    • Export Citation
  • 87. Sandilands A, Sutherland C, Irvine AD, et al. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 2009; 122:12851294.

    • Search Google Scholar
    • Export Citation
  • 88. Elias PM. Barrier repair trumps immunology in the pathogenesis and therapy of atopic dermatitis. Drug Discov Today Dis Mech 2008; 5:e33e38.

    • Search Google Scholar
    • Export Citation
  • 89. Chamlin SL, Frieden IJ, Fowler A, et al. Ceramide-dominant, barrier-repair lipids improve childhood atopic dermatitis. Arch Dermatol 2001; 137:11101112.

    • Search Google Scholar
    • Export Citation
  • 90. Jensen JM, Folster-Holst R, Baranowsky A, et al. Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 2004; 122:14231431.

    • Search Google Scholar
    • Export Citation
  • 91. McLean WHI. The allergy gene: how a mutation in a skin protein revealed a link between eczema and asthma. F1000 Med Rep [serial online] 2011; 3:2. Available at: f100.com/reports/m/3/2. Accessed May 11, 2012.

    • Search Google Scholar
    • Export Citation
  • 92. Meingassner JG, Grassberger M, Fahrngruber H, et al. A novel anti-inflammatory drug, SDZ ASM 981, for the topical and oral treatment of skin diseases: in vivo pharmacology. Br J Dermatol 1997; 137:568576.

    • Search Google Scholar
    • Export Citation
  • 93. Tanaka A, Muto S, Jung K, et al. Topical application with a new NF-kappa B inhibitor improves atopic dermatitis in NC/NgaTnd mice. J Invest Dermatol 2007; 127:855863.

    • Search Google Scholar
    • Export Citation
  • 94. Grone A. Keratinocytes and cytokines. Vet Immunol Immunopathol 2002; 88:112.

  • 95. Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 2008; 122:261266.

  • 96. Werfel T. The role of leukocytes, keratinocytes, and allergen-specific IgE in the development of atopic dermatitis. J Invest Dermatol 2009; 129:18781891.

    • Search Google Scholar
    • Export Citation
  • 97. Maeda S, Maeda S, Shibata S, et al. House dust mite major allergen Der f 1 enhances proinflammatory cytokine and chemokine gene expression in a cell line of canine epidermal keratinocytes. Vet Immunol Immunopathol 2009; 131:298302.

    • Search Google Scholar
    • Export Citation
  • 98. Ibisch C, Bourdeau P, Cadiot C, et al. Upregulation of TNF-alpha production by IFN-gamma and LPS in cultured canine keratinocytes: application to monosaccharides effects. Vet Res Commun 2007; 31:835846.

    • Search Google Scholar
    • Export Citation
  • 99. Ebner S, Nguyen VA, Forstner M, et al. Thymic stromal lymphopoietin converts human epidermal Langerhans cells into antigen-presenting cells that induce proallergic T cells. J Allergy Clin Immunol 2007; 119:982990.

    • Search Google Scholar
    • Export Citation
  • 100. Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002; 3:673860.

    • Search Google Scholar
    • Export Citation
  • 101. Gao PS, Rafaels NM, Mu D, et al. Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol 2010; 125:14031407.

    • Search Google Scholar
    • Export Citation
  • 102. Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002; 347:11511160.

    • Search Google Scholar
    • Export Citation
  • 103. Hata TR, Kotol P, Boguniewicz M, et al. History of eczema herpeticum is associated with the inability to induce human beta-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol 2010; 163:659661.

    • Search Google Scholar
    • Export Citation
  • 104. Harder J, Dressel S, Wittersheim M, et al. Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol 2010; 130:13551364.

    • Search Google Scholar
    • Export Citation
  • 105. van Damme CMM, Willemse T, van Dijk A, et al. Altered cutaneous expression of beta-defensins in dogs with atopic dermatitis. Mol Immunol 2009; 46:24492455.

    • Search Google Scholar
    • Export Citation
  • 106. DeBoer DJ, Marsella R. The ACVD task force on canine atopic dermatitis (XII): the relationship of cutaneous infections to the pathogenesis and clinical course of canine atopic dermatitis. Vet Immunol Immunopathol 2011; 81:239249.

    • Search Google Scholar
    • Export Citation
  • 107. Powers JP, Hancock RE. The relationship between peptide structure and antibacterial activity. Peptides 2003; 24:16811691.

  • 108. Searing DA, Leung DY. Vitamin D in atopic dermatitis, asthma and allergic diseases. Immunol Allergy Clin North Am 2010; 30:397409.

    • Search Google Scholar
    • Export Citation
  • 109. Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001; 15:985995.

    • Search Google Scholar
    • Export Citation
  • 110. Wang YH, Angkasekwinai P, Lu N, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 2007; 204:18371847.

    • Search Google Scholar
    • Export Citation
  • 111. Hvid M, Vestergaard C, Kemp K, et al. IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol 2011; 131:150157.

    • Search Google Scholar
    • Export Citation
  • 112. Leung DY. Atopic dermatitis: the skin as a window into the pathogenesis of chronic allergic diseases. J Allergy Clin Immunol 1995; 96:302319.

    • Search Google Scholar
    • Export Citation
  • 113. Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol 2008; 214:161178.

  • 114. Hamid Q, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 1994; 94:870876.

    • Search Google Scholar
    • Export Citation
  • 115. Ong PY, Leung DY. Immune dysregulation in atopic dermatitis. Curr Allergy Asthma Rep 2006; 6:384389.

  • 116. Ogg G. Role of T cells in the pathogenesis of atopic dermatitis. Clin Exp Allergy 2009; 39:310316.

  • 117. Costanzo A, Chimenti MS, Botti E, et al. IL-21 in the pathogenesis and treatment of skin diseases. J Dermatol Sci 2010; 60:6166.

  • 118. Carmi-Levy I, Homey B, Soumelis V. A modular view of cytokine networks in atopic dermatitis. Clin Rev Allergy Immunol 2011; 41:245253.

    • Search Google Scholar
    • Export Citation
  • 119. Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000; 408:5763.

    • Search Google Scholar
    • Export Citation
  • 120. Caruso R, Botti E, Sarra A, et al. Involvement of interleukin-21 in the epidermal hyperplasia of psoriasis. Nat Med 2009; 15:10131015.

    • Search Google Scholar
    • Export Citation
  • 121. Konforte D, Simard N, Paige CE. IL-21: an executor of B cell fate. J Immunol 2009; 182:17811787.

  • 122. Korn T, Oukka M, Kuchroo V, et al. Th17 cells: effector T cells with inflammatory properties. Semin Immunol 2007; 19:362371.

  • 123. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448:480483.

    • Search Google Scholar
    • Export Citation
  • 124. Peluso I, Fantini MC, Fina D, et al. IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 2007; 178:732739.

    • Search Google Scholar
    • Export Citation
  • 125. Jin H, Oyoshi MK, Le Y, et al. IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice. J Clin Invest 2009; 119:4760.

    • Search Google Scholar
    • Export Citation
  • 126. Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 2004; 5:752760.

    • Search Google Scholar
    • Export Citation
  • 127. Bilsborough J, Leung DY, Maurer M, et al. IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol 2006; 117:418425.

    • Search Google Scholar
    • Export Citation
  • 128. Ghilardi N, Li J, Hongo J, et al. A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J Biol Chem 2002; 277:1683116836.

    • Search Google Scholar
    • Export Citation
  • 129. Diveu C, Lelievre E, Perret D, et al. GPL, a novel cytokine receptor related to GP130 and leukemia inhibitory factor receptor. J Biol Chem 2003; 278:4985049859.

    • Search Google Scholar
    • Export Citation
  • 130. Zhang Q, Putheti P, Zhou Q, et al. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 2008; 19:347356.

    • Search Google Scholar
    • Export Citation
  • 131. Cheung PF, Wong C, Ho AW, et al. Activation of human eosinophils and keratinocytes by Th2 cytokine IL-31: implications for the immunopathogenesis of atopic dermatitis. Int Immunol 2010; 22:453467.

    • Search Google Scholar
    • Export Citation
  • 132. Venereau E, Diveu C, Grimaud L, et al. Definition and characterization of an inhibitor for interleukin-31. J Biol Chem 2010; 285:1495514963.

    • Search Google Scholar
    • Export Citation
  • 133. Grimstad O, Sawanobori Y, Vestergaard C, et al. Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp Dermatol 2009; 18:3543.

    • Search Google Scholar
    • Export Citation
  • 134. Sonkoly E, Muller A, Lauerma Al, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 2006; 117:411417.

    • Search Google Scholar
    • Export Citation
  • 135. Mizuno T, Kanbayashi S, Okawa T, et al. Molecular cloning of canine interleukin-31 and its expression in various tissues. Vet Immunol Immunopathol 2009; 31:140143.

    • Search Google Scholar
    • Export Citation
  • 136. Souwer Y, Szegedi K, Kapsenberg ML, et al. IL-17 and IL-22 in atopic allergic disease. Curr Opin Immunol 2010; 22:821826.

  • 137. Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 cells. Ann Rev Immunol 2009; 27:485517.

  • 138. Toda M, Leung DY, Molet S, et al. Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol 2003; 111:875881.

    • Search Google Scholar
    • Export Citation
  • 139. Koga C, Kabashima K, Shiraishi N, et al. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol 2008; 128:26252630.

    • Search Google Scholar
    • Export Citation
  • 140. Bettini M, Vignali DA. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol 2009; 21:612618.

  • 141. Verhagen J, Akdis M, Traidl-Hoffmann C, et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol 2006; 117:176183.

    • Search Google Scholar
    • Export Citation
  • 142. Caproni M, Antiga E, Torchia D, et al. FoxP3-expressing T regulatory cells in atopic dermatitis lesions. Allergy Asthma Proc 2007; 28:525528.

    • Search Google Scholar
    • Export Citation
  • 143. Roosterman D, Goerge T, Schneider SW, et al. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 2006; 86:13091379.

    • Search Google Scholar
    • Export Citation
  • 144. Stander S, Raap U, Weisshaar E, et al. Pathogenesis of pruritus. J Dtsch Dermatol Ges 2011; 9:456463.

  • 145. Raap U, Wieczorek D, Ghering M, et al. Increased levels of serum IL-31 in chronic spontaneous urticaria. Exp Dermatol 2010; 19:464466.

    • Search Google Scholar
    • Export Citation
  • 146. Bando T, Morikawa Y, Komori T, et al. Complete overlap of interleukin-31 receptor A and oncostatin M receptor beta in the adult dorsal root ganglia with distinct developmental expression patterns. Neuroscience 2006; 142:12631271.

    • Search Google Scholar
    • Export Citation
  • 147. Peters EMJ, Raap U, Welker P, et al. Neurotrophins act as neuroendocrine regulators of skin homeostasis in health and disease. Horm Metab Res 2007; 39:110124.

    • Search Google Scholar
    • Export Citation
  • 148. Yamaguchi J, Aihara M, Kobayashi Y, et al. Quantitative analysis of nerve growth factor (NGF) in the atopic dermatitis and psoriasis horny layer and effect of treatment on NGF in atopic dermatitis. J Dermatol Sci 2009; 53:4854.

    • Search Google Scholar
    • Export Citation
  • 149. Toyoda M, Nakamura M, Makino T, et al. Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol 2002; 147:7179.

    • Search Google Scholar
    • Export Citation
  • 150. Hodeib A, El-Samad ZA, Hanafy H, et al. Nerve growth factor, neuropeptides and cutaneous nerves in atopic dermatitis. Indian J Dermatol 2010; 55:135139.

    • Search Google Scholar
    • Export Citation
  • 151. O'Connor TM, O'Connell J, O'Brien D, et al. The role of substance P in inflammatory disease. J Cell Physiol 2004; 201:167280.

  • 152. Carstens EE, Carstens MI, Simons CT, et al. Dorsal horn neurons expressing NK-1 receptors mediate scratching in rats. Neuroreport 2010; 21:303308.

    • Search Google Scholar
    • Export Citation
  • 153. Wallengren J. Neuroanatomy and neurophysiology of itch. Dermatol Ther 2005; 18:292303.

  • 154. Buddenkotte J, Steinhoff M. Pathophysiology and therapy of pruritus in allergic and atopic diseases. Allergy 2010; 65:805821.

  • 155. Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 2007; 448:700703.

  • 156. Olivry T, Mueller RS, et al. Evidence-based veterinary dermatology: a systematic review of the pharmacotherapy of canine atopic dermatitis. Vet Dermatol 2003; 14:121146.

    • Search Google Scholar
    • Export Citation
  • 157. Tey HL, Yosipovitch G. Targeted treatment of pruritus: a look into the future. Br J Dermatol 2011; 165:517.

  • 158. Neves SR, Ram PT, Iyengar R. G protein pathways. Science 2002; 296:16361639.

  • 159. Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science 2002; 296:16531655.

  • 160. Thatcher JD. The Ras-MAPK signal transduction pathway. Sci Signal 2010; 3:tr1.

  • 161. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296:16551657.

  • 162. Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolic disease. Cell Metab 2011; 13:1122.

  • 163. Serfling E, Berberich-Siebelt F, Chuvpilo S, et al. The role of NF-AT transcription factors in T cell activation and differentiation. Biochim Biophys Acta 2000; 1498:118.

    • Search Google Scholar
    • Export Citation
  • 164. Stepkowski SM. Molecular targets for existing and novel immunosuppressive drugs. Expert Rev Mol Med 2000; 2:123.

  • 165. Sousa CA, Marsella R. The ACVD task force on canine atopic dermatitis (II): genetic factors. Vet Immunol Immunopathol 2001; 81:153157.

    • Search Google Scholar
    • Export Citation
  • 166. Tarpataki N. Recent developments in canine atopic dermatitis: a review. Acta Vet Hung 2006; 54:473484.

  • 167. Wood SH, Ollier WE, Nuttall T, et al. Despite identifying some shared gene associations with human atopic dermatitis the use of multiple dog breeds from various locations limits detection of gene associations in canine atopic dermatitis. Vet Immunol Immunopathol 2010; 138:193197.

    • Search Google Scholar
    • Export Citation

Current understanding of the pathophysiologic mechanisms of canine atopic dermatitis

Rosanna Marsella DVM, DACVD1, Candace A. Sousa DVM, DABVP, DACVD2, Andrea J. Gonzales PhD3, and Valerie A. Fadok DVM, PhD, DACVD4
View More View Less
  • 1 Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.
  • | 2 Pfizer Animal Health, 5 Giralda Farms, Madison, NJ 07940.
  • | 3 Pfizer Animal Health, 333 Portage St, Kalamazoo, MI 49007.
  • | 4 Gulf Coast Veterinary Specialists, Dermatology and Allergy, 1111 W Loop S, Ste 120, Houston, TX 77027.

Contributor Notes

Supported by Pfizer Animal Health.

Address correspondence to Dr. Sousa (candace.a.sousa@pfizer.com).