• 1.

    Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005;438:803819.

    • Search Google Scholar
    • Export Citation
  • 2.

    Clark LA, Tsai KL, Steiner JM, et al. Chromosome-specific microsatellite multiplex sets for linkage studies in the domestic dog. Genomics 2004;84:550554.

    • Search Google Scholar
    • Export Citation
  • 3.

    Applied Biosystems SNP genotyping Web site. Available at: marketing.appliedbiosystems.com/mk/get/SNP_LANDING. Aug 18, 2007.

  • 4.

    Broad Institute. Canine array FAQ. Available at: www.broad.mit.edu/mammals/dog/caninearrayfaq.html. Oct 1, 2008.

  • 5.

    Bjornerfeldt S, Hailer F, Nord M, et al. Assortative mating and fragmentation within dog breeds. BMC Evol Biol 2008;8:28.

  • 6.

    Goldstein O, Zangerl B, Pearce-Kelling S, et al. Linkage disequilibrium mapping in domestic dog breeds narrows the progressive rod-cone degeneration interval and identifies ancestral disease-transmitting chromosome. Genomics 2006;88:541550.

    • Search Google Scholar
    • Export Citation
  • 7.

    Quignon P, Herbin L, Cadieu E, et al. Canine population structure: assessment and impact of intra-breed stratification on snpbased association studies. PLoS ONE 2007;2:e1324.

    • Search Google Scholar
    • Export Citation
  • 8.

    Guide to hereditary and congenital diseases in dogs Web site. Available at: www.siriusdog.com/articles/hereditary-congenitaldiseases-dog.htm. Mar 29, 2007.

    • Search Google Scholar
    • Export Citation
  • 9.

    Online Mendelian inheritance in Animals (OMIA) Web site. Available at: www.angis.org.au/Databases/BIRX/omia. Mar 29, 2007.

  • 10.

    Awano T, Katz ML, O'Brien DP, et al. A frame shift mutation in canine TPP1 (the ortholog of human CLN2) in a juvenile Dachshund with neuronal ceroid lipofuscinosis. Mol Genet Metab 2006;89:254260.

    • Search Google Scholar
    • Export Citation
  • 11.

    Awano T, Katz ML, O'Brien DP, et al. A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis. Mol Genet Metab 2006;87:341348.

    • Search Google Scholar
    • Export Citation
  • 12.

    Beltran WA, Hammond P, Acland GM, et al. A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006;47:16691681.

    • Search Google Scholar
    • Export Citation
  • 13.

    Callan MB, Aljamali MN, Margaritis P, et al. A novel missense mutation responsible for factor VII deficiency in research Beagle colonies. J Thromb Haemost 2006;4:26162622.

    • Search Google Scholar
    • Export Citation
  • 14.

    Clark LA, Wahl JM, Rees CA, et al. Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci U S A 2006;103:13761381.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kerns JA, Cargill EJ, Clark LA, et al. Linkage and segregation analysis of black and brindle coat color in domestic dogs. Genetics 2007;176:16791689.

    • Search Google Scholar
    • Export Citation
  • 16.

    McGraw RA, Carmichael KP. Molecular basis of globoid cell leukodystrophy in Irish Setters. Vet J 2006;171:370372.

  • 17.

    Mellersh CS, Boursnell ME, Pettitt L, et al. Canine RPGRIP1 mutation establishes cone-rod dystrophy in miniature longhaired dachshunds as a homologue of human Leber congenital amaurosis. Genomics 2006;88:293301.

    • Search Google Scholar
    • Export Citation
  • 18.

    Mellersh CS, Pettitt L, Forman OP, et al. Identification of mutations in HSF4 in dogs of three different breeds with hereditary cataracts. Vet Ophthalmol 2006;9:369378.

    • Search Google Scholar
    • Export Citation
  • 19.

    Pettigrew R, Fyfe JC, Gregory BL, et al. CNS hypomyelination in rat terrier dogs with congenital goiter and a mutation in the thyroid peroxidase gene. Vet Pathol 2007;44:5056.

    • Search Google Scholar
    • Export Citation
  • 20.

    Zangerl B, Goldstein O, Philp AR, et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics 2006;88:551563.

    • Search Google Scholar
    • Export Citation
  • 21.

    Acland GM, Aguirre GD, Bennett J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005;12:10721082.

    • Search Google Scholar
    • Export Citation
  • 22.

    Bauer TR Jr, Gu YC, Creevy KE, et al. Leukocyte adhesion deficiency in children and Irish Setter dogs. Pediatr Res 2004;55:363367.

  • 23.

    Bauer TR Jr, Hai M, Tuschong LM, et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 2006;108:33133320.

    • Search Google Scholar
    • Export Citation
  • 24.

    Casal M, Haskins M. Large animal models and gene therapy. Eur J Hum Genet 2006;14:266272.

  • 25.

    Ciron C, Desmaris N, Colle MA, et al. Gene therapy of the brain in the dog model of Hurler's syndrome. Ann Neurol 2006;60:204213.

  • 26.

    Collins CA, Morgan JE. Duchenne's muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies. Int J Exp Pathol 2003;84:165172.

    • Search Google Scholar
    • Export Citation
  • 27.

    De Meyer SF, Vanhoorelbeke K, Chuah MK, et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 2006;107:47284736.

    • Search Google Scholar
    • Export Citation
  • 28.

    Ellinwood NM, Vite CH, Haskins ME. Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med 2004;6:481506.

    • Search Google Scholar
    • Export Citation
  • 29.

    Felsburg PJ, Hartnett BJ, Gouthro TA, et al. Thymopoiesis and T cell development in common gamma chain-deficient dogs. Immunol Res 2003;27:235246.

    • Search Google Scholar
    • Export Citation
  • 30.

    Fujiki N, Yoshida Y, Ripley B, et al. Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin-ligand-deficient narcoleptic dog. Sleep 2003;26:953959.

    • Search Google Scholar
    • Export Citation
  • 31.

    Jacobson SG, Acland GM, Aguirre GD, et al. Safety of recombinant adeno-associated virus type 2–RPE65 vector delivered by ocular subretinal injection. Mol Ther 2006;13:10741084.

    • Search Google Scholar
    • Export Citation
  • 32.

    Jiang H, Lillicrap D, Patarroyo-White S, et al. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 2006;108:107115.

    • Search Google Scholar
    • Export Citation
  • 33.

    McCormack WM Jr, Seiler MP, Bertin TK, et al. Helper-dependent adenoviral gene therapy mediates long-term correction of the clotting defect in the canine hemophilia A model. J Thromb Haemost 2006;4:12181225.

    • Search Google Scholar
    • Export Citation
  • 34.

    Sarkar R, Mucci M, Addya S, et al. Long-term efficacy of adenoassociated virus serotypes 8 and 9 in hemophilia A dogs and mice. Hum Gene Ther 2006;17:427439.

    • Search Google Scholar
    • Export Citation
  • 35.

    Ting-De Ravin SS, Kennedy DR, Naumann N, et al. Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy. Blood 2006;107:30913097.

    • Search Google Scholar
    • Export Citation
  • 36.

    Trobridge G, Beard BC, Kiem HP. Hematopoietic stem cell transduction and amplification in large animal models. Hum Gene Ther 2005;16:13551366.

    • Search Google Scholar
    • Export Citation
  • 37.

    Wang B, O'Malley TM, Xu L, et al. Expression in blood cells may contribute to biochemical and pathological improvements after neonatal intravenous gene therapy for mucopolysaccharidosis VII in dogs. Mol Genet Metab 2006;87:821.

    • Search Google Scholar
    • Export Citation
  • 38.

    Yanay O, Brzezinski M, Christensen J, et al. An adult dog with cyclic neutropenia treated by lentivirus-mediated delivery of granulocyte colony-stimulating factor. Hum Gene Ther 2006;17:464469.

    • Search Google Scholar
    • Export Citation
  • 39.

    Carrier DR, Chase K, Lark KG. Genetics of canid skeletal variation: size and shape of the pelvis. Genome Res 2005;15:18251830.

  • 40.

    Chase K, Sargan D, Miller K, et al. Understanding the genetics of autoimmune disease: two loci that regulate late onset Addison's disease in Portuguese Water Dogs. Int J Immunogenet 2006;33:179184.

    • Search Google Scholar
    • Export Citation
  • 41.

    Lark KG, Chase K, Sutter NB. Genetic architecture of the dog: sexual size dimorphism and functional morphology. Trends Genet 2006;22:537544.

    • Search Google Scholar
    • Export Citation
  • 42.

    Chase K, Lawler DF, Adler FR, et al. Bilaterally asymmetric effects of quantitative trait loci (QTLs): QTLs that affect laxity in the right versus left coxofemoral (hip) joints of the dog (Canis familiaris). Am J Med Genet 2006;124:239247.

    • Search Google Scholar
    • Export Citation
  • 43.

    Chase K, Lawler DF, Carrier DR, et al. Genetic regulation of osteoarthritis: a QTL regulating cranial and caudal acetabular osteophyte formation in the hip joint of the dog (Canis familiaris). Am J Med Genet A 2005;135:334335.

    • Search Google Scholar
    • Export Citation
  • 44.

    Todhunter RJ, Mateescu R, Lust G, et al. Quantitative trait loci for hip dysplasia in a cross-breed canine pedigree. Mamm Genome 2005;16:720730.

    • Search Google Scholar
    • Export Citation
  • 45.

    Zhu L, Zhang Z, Feng F, et al. Single nucleotide polymorphisms refine QTL intervals for hip joint laxity in dogs. Anim Genet 2008;39:141146.

    • Search Google Scholar
    • Export Citation
  • 46.

    Sutter NB, Bustamante CD, Chase K, et al. A single IGF1 allele is a major determinant of small size in dogs. Science 2007;316:112115.

Advertisement

Development and use of DNA archives at veterinary teaching hospitals to investigate the genetic basis of disease in dogs

View More View Less
  • 1 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 2 Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 3 Department of Information Technology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 4 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 5 Department of Biological Statistics and Computational Biology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 6 Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 7 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Contributor Notes

Supported by the National Institutes of Health (grant No. R24 GM082910-01A1); by the Baker Institute for Animal Health, Center for Vertebrate Genomics, and the Department of Clinical Sciences, College of Veterinary Medicine, Cornell University; and by Pfizer Incorporated.

The authors thank Drs. Kerstin Lindblad-Toh, Philip Reilly, and Jeffrey Murray for technical assistance in establishing the DNA archive at Cornell University.

Address correspondence to Dr. Todhunter.