• 1

    Salem N Jr, Wegher B, Mena P, et al. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci U S A 1996; 93: 4954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Sauerwald TU, Hachey DL, Jensen CL, et al. Effect of dietary alpha-linolenic acid intake on incorporation of docosahexaenoic and arachidonic acids into plasma phospholipids of term infants. Lipids 1996; suppl 31: S131S135.

    • Search Google Scholar
    • Export Citation
  • 3

    Rodriguez A, Sarda P, Nessmann C, et al. Fatty acid desaturase activities and polyunsaturated fatty acid composition in human liver between the seventeenth and thirty-sixth gestation week. Am J Obstet Gynecol 1998; 179: 10631070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Hornstra G. Essential fatty acids in mothers and their neonates. Am J Clin Nutr 2000; 71(suppl 5): 1262S1269S.

  • 5

    Farquharson J, Cockburn F, Patrick WA, et al. Effect of diet on infant subcutaneous tissue triglyceride fatty acids. Arch Dis Child 1993; 69: 589593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Innis SM, Sprecher H, Hachey D, et al. Neonatal polyunsaturated fatty acid metabolism. Lipids 1999; 34: 139149.

  • 7

    Uauy R, Mena P, Wegher B, et al. Long-chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr Res 2000; 47: 127135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Haggarty P, Ashton JM, Joynson M, et al. Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta. Biol Neonate 1999; 75: 350359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Benassayag C, Mignot TM, Haourigui M, et al. High polyunsaturated fatty acid, thromboxane A2, and alpha-fetoprotein concentrations at the human feto-maternal interface. J Lipid Res 1997; 38: 276286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Haggarty P, Page K, Abramovic DR, et al. Long-chain polyunsaturated fatty acid transport across the perfused human placenta. Placenta 1997; 18: 635642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Martinez M. Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders. Brain Res 1992; 583: 171182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Farquharson J, Jamieson EC, Logan RW, et al. Age- and dietary-related distributions of hepatic arachidonic and docosahexaenoic acid in early infancy. Pediatr Res 1995; 38: 361365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Clandinin MT, Chappell JE, Leong S, et al. Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev 1980; 4: 121129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev 1979; 3: 7983.

  • 15

    Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child 1973; 48: 757767.

  • 16

    Greiner RC, Winter J, Nathanielsz PW, et al. Brain docosahexaenoate accretion in fetal baboons: bioequivalence of dietary alphalinolenic and docosahexaenoic acids. Pediatr Res 1997; 42: 826834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Litman BJ, Niu SL, Polozova A, et al. The role of docosahexaenoic acid containing phospholipids in modulating G proteincoupled signaling pathways: visual transduction. J Mol Neurosci 2001; 16: 237242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Neuringer M, Connor WE, Lin DS, et al. Biochemical and functional effects of prenatal and postnatal omega-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci U S A 1986; 83: 40214025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Stinson AM, Wiegand RD, Anderson RE. Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J Lipid Res 1991; 32: 20092017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Neuringer M, Connor WE, van Petten C, et al. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 1984; 73: 272276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Arant BS Jr, Gooch WM III. Developmental changes in the mongrel canine brain during postnatal life. Early Hum Dev 1982; 7: 179194.

  • 22

    Aveldaño de Caldironi MI, Bazan NG. Composition and biosynthesis of molecular species of retina phosphoglycerides. Neurochemistry 1980; 1: 381392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Fliesler SJ, Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 1983; 22: 79131.

  • 24

    Boesze-Battaglia K, Albert AD. Fatty acid composition of bovine rod outer segment plasma membrane. Exp Eye Res 1989; 49: 699701.

  • 25

    Aveldaño de Caldironi MI. Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochemistry 1988; 27: 12291239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Wiedmann TS, Pates RD, Beach JM, et al. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 1988; 27: 64696474.

  • 27

    Wang Y, Botelho AV, Martinez GV, et al. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. J Am Chem Soc 2002; 124: 76907701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Calvert PD, Govardovskii VI, Krasnoperova N, et al. Membrane protein diffusion sets the speed of rod phototransduction. Nature 2001; 411: 9094.

  • 29

    Dratz EA, Deese AJ. The role of docosahexaenoic acid (22:6 n-3) in biological membranes: examples from photoreceptors and model membrane bilayers. In: Simopoulos AP, Kifer RR, Martin RE, eds. Health effects of polyunsaturated fatty acids in seafoods. New York: Academic Press Inc, 1986; 319351.

    • Search Google Scholar
    • Export Citation
  • 30

    Mitchell DC, Litman BJ. Docosahexaenoic acid-containing phospholipids optimally promote rhodopsin activation. In: Riemersma RA, Armstrong R, Kelly RW, et al, eds. Essential fatty acids and eicosanoids. Champaign, Ill: AOCS Press, 1998; 154158.

    • Search Google Scholar
    • Export Citation
  • 31

    Bok D. Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest Ophthalmol Vis Sci 1985; 26: 16591694.

  • 32

    Ross AC. Vitamin A and retinoids. In: Shils ME, Olson JA, Shike M, et al, eds. Modern nutrition in health and disease. 9th ed. Baltimore: Lippincott, Williams & Wilkins, 1999; 317.

    • Search Google Scholar
    • Export Citation
  • 33

    Gordon WC, Bazan NG. Docosahexaenoic acid utilization during rod photoreceptor cell renewal. J Neurosci 1990; 10: 21902202.

  • 34

    Wang N, Anderson RE. Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium. Biochemistry 1993; 32: 1370313709.

  • 35

    Li J, Wetzel MG, O'Brien PJ. Transport of n-3 fatty acids from the intestine to the retina in rats. J Lipid Res 1992; 33: 539548.

  • 36

    Scott BL, Bazan NG. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci U S A 1989; 86: 29032907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Anderson GJ, Connor WE, Corliss JD. Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr Res 1990; 27: 8997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Wang N, Anderson RE. Enrichment of polyunsaturated fatty acids from rat retinal pigment epithelium to rod outer segments. Curr Eye Res 1992; 11: 783791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Wang N, Wiegand RD, Anderson RE. Uptake of 22-carbon fatty acids into rat retina and brain. Exp Eye Res 1992; 54: 933939.

  • 40

    Gordon WC, Rodriguez de Turco EB, Bazan NG. Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr Eye Res 1992; 11: 7383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Bazan NG, Birkle DL, Reddy TS. Biochemical and nutritional aspects of the metabolism of polyunsaturated fatty acids and phospholipids in experimental models of retinal degradation. In: La Vail MM, Hollyfield JG, Anderson RE, eds. Retinal degeneration: experimental and clinical studies. New York: Alan R. Liss Inc, 1985; 159187.

    • Search Google Scholar
    • Export Citation
  • 42

    Bazan NG, Reddy TS, Redmond TM, et al. Endogenous fatty acids are covalently and noncovalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J Biol Chem 1985; 260: 1367713680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Bazan NG, Reddy TS. Retina. In: Lajtha A, ed. Handbook of neurochemistry. Vol 8. New York: Plenum Press, 1985; 507575.

  • 44

    Benolken RM, Anderson RE, Wheeler TG. Membrane fatty acids associated with the electrical response in visual excitation. Science 1973; 182: 12531254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Leat WMF, Curtis R, Millichamp NJ, et al. Retinal function in rats and guinea-pigs reared on diets low in essential fatty acids and supplemented with linoleic and linolenic acids. Ann Nutr Metab 1986; 30: 166174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Bourre JM, Francois M, Youyou A, et al. The effects of dietary α-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 1989; 119: 18801892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Connor WE, Neuringer M. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina. In: Karnovsky ML, Leaf A, Bolis LC, eds. Biological membranes: aberrations in membrane structure and function. New York: Alan R. Liss Inc, 1988; 275294.

    • Search Google Scholar
    • Export Citation
  • 48

    Connor WE, Neuringer M, Lin DS. Dietary effects on brain fatty acid composition: the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of rhesus monkeys. J Lipid Res 1990; 31: 237247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Weisinger HS, Vingrys AJ, Bui BV, et al. Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina. Invest Ophthalmol Vis Sci 1999; 40: 327338.

    • Search Google Scholar
    • Export Citation
  • 50

    Harwerth RS, Smith EL. Rhesus monkey as a model for normal vision of humans. Am J Optom Physiol Opt 1985; 62: 633641.

  • 51

    Connor WE, Neuringer M, Barstad L. Dietary deprivation of linolenic acid in rhesus monkey: effects on plasma and tissue fatty acid composition and on visual function. Trans Assoc Am Physicians 1984; 97: 19.

    • Search Google Scholar
    • Export Citation
  • 52

    Jeffrey BG, Mitchell DC, Gibson RA. n-3 fatty acid deficiency alters recovery of the rod photoresponse in rhesus monkeys. Invest Ophthalmol Vis Sci 2002; 43: 28062814.

    • Search Google Scholar
    • Export Citation
  • 53

    Jacobs GH. Primate photopigments and primate color vision. Proc Natl Acad Sci U S A 1996; 93: 577581.

  • 54

    Jeffrey BG, Mitchell DC, Hibbeln JR, et al. Visual acuity and retinal function in infant monkeys fed long-chain PUFA. Lipids 2002; 37: 839848.

  • 55

    Diau GY, Loew ER, Wijendran V, et al. Docosahexaenoic and arachidonic acid influence on preterm baboon retinal composition and function. Invest Ophthalmol Vis Sci 2003; 44: 45594566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Alvarez RA, Aguirre GD, Acland GM. Docosapentaenoic acid is converted to docosahexaenoic acid in the retinas of normal and prcd-affected miniature poodle dogs. Invest Ophthalmol Vis Sci 1994; 35: 402408.

    • Search Google Scholar
    • Export Citation
  • 57

    Bauer JE, Dunbar BL, Bigley KE. Dietary flaxseed in dogs results in differential transport and metabolism of n-3 polyunsaturated fatty acids. J Nutr 1998; 128(suppl 12): 2641S2644S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58

    Heinemann KM, Waldron MK, Bigley KE, et al. Long-chain (n-3) polyunsaturated fatty acids are more efficient than α-linolenic acid in improving electroretinogram responses of puppies exposed during gestation, lactation and weaning. J Nutr 2005; 135: 19601966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Bauer JE, Heinemann KM, Lees GE, et al. Docosahexaenoic acid accumulates in plasma of canine puppies raised on milk from dams fed alpha-linolenic acid-rich diet but not after weaning. J Nutr 2006;in press.

    • Search Google Scholar
    • Export Citation

Advertisement

Docosahexaenoic acid and neurologic development in animals

Kimberly M. Heinemann PhD1 and John E. Bauer DVM, PhD, DACVN2
View More View Less
  • 1 Comparative Nutrition Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843.
  • | 2 Comparative Nutrition Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843.

Contributor Notes

Dr. Heinemann's present address is the Department of Biology and Chemistry, Division of Arts and Sciences, The Victoria College, Victoria, TX 77901.

Supported in part by Nestle Purina Pet Care; and the Mark L. Morris Professorship in Clinical Nutrition, Texas A&M University, College Station, Tex.

Dr. Bauer.