Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses

View More View Less
  • 1 Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.
  • | 2 Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.
  • | 3 Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.
  • | 4 Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.
  • | 5 Department of Cardiology, Medical School, University of Tennessee, Memphis, TN 38163.
  • | 6 Department of Cardiology, Medical School, University of Tennessee, Memphis, TN 38163.
  • | 7 Department of Cardiology, Medical School, University of Tennessee, Memphis, TN 38163.

Abstract

Objective—To determine significant molecular and cellular factors responsible for differences in secondintention healing in thoracic and metacarpal wounds of horses.

Animals—6 adult mixed-breed horses.

Procedure—A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with α-smooth muscle actin (α-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining.

Results—Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-β1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds.

Conclusions and Clinical Relevance—Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA, TGF-β1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue. (Am J Vet Res 2002;63:1564–1570)

Abstract

Objective—To determine significant molecular and cellular factors responsible for differences in secondintention healing in thoracic and metacarpal wounds of horses.

Animals—6 adult mixed-breed horses.

Procedure—A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with α-smooth muscle actin (α-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining.

Results—Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-β1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds.

Conclusions and Clinical Relevance—Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA, TGF-β1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue. (Am J Vet Res 2002;63:1564–1570)