Calculation of variables describing plasma nonvolatile weak acids for use in the strong ion approach to acid-base balance in cattle

Peter D. Constable, BVSc, PhD

Objective—To calculate values for the total concentration of nonvolatile weak acids (Atot) and the effective dissociation constant for nonvolatile weak acids (Kd) of bovine plasma and to determine the best method for quantifying the unmeasured strong anion concentration in bovine plasma.

Sample Population—Data sets from published and experimental studies.

Procedure—The simplified strong ion model was applied to published and experimentally determined values for pH, Pco2, and strong ion difference (SID`). Nonlinear regression was used to solve simultaneously for Atot and Kd. Four methods for quantifying the unmeasured strong anion concentration in plasma (anion gap, the Fencl base-excess method [BEua], the Figge unmeasured anion method [XAI], and the strong ion gap [SIG]) were compared in 35 cattle with abomasal volvulus.

Results—For bovine plasma at 37 C, Atot was 25 mM/L, equivalent to 7.6 times the albumin concentration or 2.6 times the total protein concentration; Kd was 0.87 X 10–7, equivalent to pKa of 7.06. The Atot and Kd values were validated, using data sets from in vivo and in vitro studies. Plasma unmeasured strong anion concentration was most accurately predicted in critically ill cattle by calculating SIG from serum albumin (R2, 0.66) or total protein concentration (R2, 0.60), compared with BEua (R2, 0.56); XAI (R2, 0.50), and the anion gap (R2, 0.41).

Changes in acid-base balance and plasma electrolyte concentrations frequently are evident in sick cattle1 as well as after a change in diet in healthy cattle.2 Circadian changes in blood pH and plasma electrolyte concentrations related to feeding also have been observed.3 From a clinical and nutritional perspective, it can be valuable to determine the mechanism for changes in acid-base status and plasma electrolyte concentrations in cattle. Two mechanistic acid-base models that are based on the strong ion approach have been developed to assess acid-base status: the strong ion model4 and the simplified strong ion model.5 Clinical application of these models to acid-base disturbances in domestic animals has been discussed.5,6

The strong ion approach states that plasma pH is dependent on 3 independent variables: Pco2; the difference between the charge of plasma strong cations (sodium, potassium, calcium, magnesium) and strong anions (chloride, lactate, sulfate, ketoacids, nonesterified fatty acids, and many others), termed the strong ion difference (SID`; Appendix), in which strong cations and anions are fully dissociated at physiologic pH; and the total concentration of nonvolatile buffers (albumin, globulins, and inorganic phosphate) in plasma (Aton). Nonvolatile buffers are not fully dissociated at physiologic pH, which is in marked contrast to the complete dissociation of strong cations and anions. For a weak acid (HA)–conjugate base (A`) that is not fully dissociated, Aton is defined as follows: Aton = [HA] + [A`], because the net charge assigned to albumin, globulin, and phosphate in plasma is negative, and the conventional dissociation reaction is defined as follows: HA ` H+ + A`. At equilibrium, an apparent weak acid dissociation constant (Kd) for nonvolatile buffers can be calculated as follows: Kd = [H`][A`]/[HA].7 It should be mentioned that plasma pH is actively defended by changes in Pco2 (respiratory system) and SID` (urinary and gastrointestinal systems) and that acid-base status is not typically regulated by changes in Aton.

The strong ion approach requires accurate species-specific values for Aton and Kd.` Values for Aton (14.9 or 15.0 mM/L) and Kd (2.1 X 10–7 or 2.2 X 10–7) have been experimentally determined for equine plasma,9 but other values for Aton (24.1 mM/L) and Kd (1.0 X 10–7) have been calculated for human plasma.10 Results of a study in milk-fed calves suggested that Aton is 18.3 mM/L, and Kd is 6.8 X 10–7, although the calculated value for Kd was greater than the expected value of 1.0 X 10–7 to 2.0 X 10–7.11,12 Accordingly, the first objective of the study reported here was to calculate accurate values for Aton and Kd for bovine plasma. This was accomplished by use of published data from 2 in vitro studies,13,14 published pKa values for amino acids in bovine albumin,15 and results of an in vitro study of CO2 tonometry of bovine plasma.16 Calculated Aton and Kd values then were validated, using data obtained from an in vivo study in calves with experimentally induced respiratory and metabolic acidosis6 and an in vitro study of CO2 tonometry of bovine serum.

The second objective was to compare 4 methods for quantifying the unmeasured strong anion concentration in bovine plasma. These 4 methods were the traditional anion gap approach,6,11 the Fencl base-excess method...
Materials and Methods

Calculation of A_{tot} and K_{a} values for bovine plasma—Data were obtained from 2 in vitro studies. 17,18 The former data set involved titration of bovine plasma at 38 C with hydrochloric acid and sodium carbonate. 19 The simplified strong ion electroneutrality equation 9 used in this study was selected because of the fact it provided the narrowest confidence intervals for estimates of A_{tot} and K_{a}. Equation 1 was applied to the reported values for pH, P{\text{CO}}_2, and SID^{+}, the latter variable being calculated from the reported base-excess value for plasma, using the following equation: \[\text{SID}^+ = \text{base excess} + 44 \]. The addition of 44 to the base-excess value was required, because the normal base-excess value in bovine plasma is approximately +2 (when pH is 7.43, P{\text{CO}}_2 is 43 mm Hg, and HCO_3^{-} is 26.4 mm/L), indicating that SID^{+} is 41.7 + 2, which is approximately 44 mEq/L. The calculated value for SID^{+} was extrapolated from the reported value for human plasma, where base excess is defined as 0 when pH is 7.40, P{\text{CO}}_2 is 40 mm Hg, and HCO_3^{-} is 24.7 mEq/L. 6,20 Although it is acknowledged that the value of 44 mEq/L for the SID^{+} of bovine plasma is approximate, the estimate agreed with that obtained by summing the charge contributed to strong cations and anions in bovine plasma (approximately 44 mEq/L; Appendix). 7

Data analysis was restricted to base-excess values between −15 and +15 mEq/L, because residual plots developed during nonlinear regression analysis indicated deviation of fitted from actual values outside this range, presumably because the hypertonic solutions used for strong ion titration increased ionic strength, thereby altering the effective values for pK_{a} and pK'_{a}. 20,21 Titration was accomplished at 38 C, therefore, temperature-adjusted values for S ([0.0301 mm/mL/mm Hg]) 22 and pK'_{a} (6.120) were used. 18,23 Nonlinear regression analysis was used to solve simultaneously for A_{tot} and K_{a}, using reported or derived values for pH, P{\text{CO}}_2, and SID^{+}, known values for S and pK'_{a}, equation 1, and the Marquardt expansion algorithm.9,24 The 6-factor simplified strong ion model 25 was used for nonlinear regression analysis instead of the 8-factor strong ion model, 26 because reducing the number of variables in the model leads to more precise estimates. 27 Initial estimates for A_{tot} of 5 to 30 mEq/L in increments of 5 mEq/L and for K_{a} of 0.5 × 10^{-7} to 3.0 × 10^{-7} in increments of 0.5 × 10^{-7} were used. The calculated value for pK'_{a} (−log_{e} K_{a} obtained at 38 C) was corrected to 37 C, using the van't Hoff equation as follows (equation 2):

\[pK'_{a} = pK'_{a} + (\Delta H/2.303R)((1/T_t) - (1/T)) \]

where \(\Delta H\) is 6.940 cal/mol, R (the gas constant) is 1.9871 cal/K/mol, and T is the temperature (in degrees Kelvin). 28 This provided the following equation:

\[pK'_{a} = pK'_{a} + 0.016 \]

The second data set involved titration of combined bovine and ovine plasma, using hydrochloric acid and sodium carbonate in addition to hemoglobin concentrations of 5, 10, and 15 g/dl at 38 C. 29 Data analysis was completed for the 3 hemoglobin concentrations in a manner similar to that described previously for plasma. Linear regression analysis of the calculated A_{tot} or K_{a} values against hemoglobin concentration (5, 10, and 15 g/dl) was performed, and the intercept value (hemoglobin concentration of 0 g/dl) was used as the estimated value for A_{tot} and K_{a} of plasma. This extrapolation method was required, because hemoglobin has A_{tot} and K_{a} values that differ from those of plasma. The calculated value for K_{a} obtained at 38 C was corrected to a value for 37 C, using equation 2 as described previously.

Calculation of K_{a} for bovine albumin, using pK_{a} values for dissociable amino acid groups—Tanford et al 30 identified 215 dissociable groups on bovine albumin that could be categorized into 7 groups that had an effective K_{a} at 25 C as follows: 1 α-carboxy terminus group, pK_{a} = 3.75; 9 β- and γ- groups, pK_{a} = 4.02; 16 imidazole groups, pK_{a} = 6.9; 1 α-amino group, pK_{a} = 7.75; 57 ε-amino groups, pK_{a} = 9.88; 19 phenolic groups, pK_{a} = 10.35; and 22 guanidine groups, pK_{a} > 12. An apparent pK_{a} for bovine albumin was calculated from this data, using the weighted mean average of the 215 dissociable groups and assuming the pK_{a} of guanidine was 12.5.

Calculation of A_{tot} and K_{a} values, using in vitro CO_{2} tonometry—Jugular venous blood was collected anaerobically from 6 healthy adult cattle (3 females, 3 males) into tubes containing heparin sodium. Samples were centrifuged, and plasma was harvested. Plasma samples were equilibrated at 37 C for 20 minutes with a gas that contained CO_{2} by use of a tonometer. 31 Varying mixtures of 100% O_{2} and 100% CO_{2} were used to provide a wide range of P{\text{CO}}_2. The pH and P{\text{CO}}_2 of the tonometered plasma samples were determined at 37 C using a pH-blood gas analyzer. 30 Plasma concentrations of sodium, potassium, and chloride (ion-selective electrode potentiometry), albumin (bromocresol green method), total protein (biuret method), and phosphorus (ammonium molybdate method) were determined, using an automatic analyzer. 32 Plasma lactate concentration was determined, using a spectrophotometric method and lactate dehydrogenase. 33 Measured SID^{+} was calculated as follows:

\[\text{SID}^+ = [\text{Na}^+] + [K^+] - [\text{Cl}^-] - [\text{lactate}] \]

where all values were in mEq/L. Data analysis, using nonlinear regression, equation 1, and the measured values for pH, SID^{+}, and P{\text{CO}}_2, was completed as described previously to provide estimates of A_{tot} from those of plasma. Calculation of A_{tot} and K_{a} values in plasma for each of the cattle. Because titration was accomplished at 37 C, temperature-adjusted values for S (ie, [0.0307 mm/mL/mm Hg]) 34 and pK'_{a} (ie, 6.129) were used. 35 Validation of calculated A_{tot} and K_{a} values, using data from an in vivo study—The calculated A_{tot} and K_{a} values were applied to data obtained from an in vivo study that involved 8 calves with acute mixed respiratory and metabolic acidosis. 35 Plasma pH was calculated by use of the simplified strong ion equation 36 as follows (equation 3):

\[\text{pH} = \log_{10}(25[SID^{+}/[K^+] \cdot S \cdot P{\text{CO}}_2] + [K_{a} \cdot A_{tot}] - [K_{a} \cdot \text{SID}^{+}] + v\{([K^+] \cdot S \cdot P{\text{CO}}_2) + [K_{a} \cdot \text{SID}^{+}] + [K_{a} \cdot \text{Atot}]^{-1} - (4K_{a} \cdot \text{SID}^{+} \cdot A_{tot})\}) \]

where K_{a} is the apparent dissociation constant for carbonic acid. Plasma pH was calculated from reported values for SID^{+} and P{\text{CO}}_2 as well as total protein or albumin concentrations. Measured SID^{+} was calculated as follows:

\[\text{SID}^+ = [\text{Na}^+] + [K^+] - [\text{Cl}^-] - [\text{lactate}] \]

where sodium, potassium, and chloride concentrations were determined by use of ion-selective electrode potentiometry, 35 and lactate concentration was determined by the lactate dehydrogenase method. 33 Value for A_{tot} was calculated from
total protein or albumin concentration, whereas total protein concentration was measured by use of the biuret method, and albumin concentration was measured by use of the bromcresol green method. The calculated pH value (pHcalc) was regressed against the measured pH value (pHmeas).

Validation of calculated A_{tot} and K_e values, using data from in vitro studies—Calculated A_{tot} and K_e values were applied to data obtained from a report of an in vitro study that involved CO$_2$ tonometry of bovine serum at 38°C. Plasma pH was calculated, using equation 3, reported values for PCO$_2$ and calculated values for A_{tot} and K_e. The value for SID was assumed to be 44 mEq/L. The value for pHcalc was regressed against the value for pHmeas.

Quantifying unmeasured strong anion concentration in plasma—A clinically important problem in sick cattle is identifying and quantifying strong anions in plasma that are not routinely measured such as lactate, β-hydroxybutyrate, acetocacetate, and anions associated with uremia. Unmeasured strong anions traditionally have been quantified by calculating the anion gap, using the following equation:

$$ \text{Anion gap} = ([\text{Na}^+] + [\text{K}^+]) - ([\text{Cl}^-] + [\text{HCO}_3^-]) $$

The concentration of HCO$_3^-$ was calculated as follows:

$$ [\text{HCO}_3^-] = 5 \times \text{PCO}_2 \times 10^{\text{pHmeas} - \text{PCO}_2} $$

This method requires measurement of 5 factors (pH, PCO$_2$, and concentrations of sodium, potassium, and chloride) or 4 factors (total CO$_2$ and concentrations of sodium, potassium, and chloride) and has been applied to acid-base disturbances in cattle.

A second method for quantifying unmeasured strong anion concentration10,22,23 was developed by Fencl. That method compartmentalizes base excess (BE) in units of milliequivalents per liter into various components. These include BE changes in plasma free water (BEfw), which is calculated by use of the following equation:

$$ \text{BEfw} = 0.30 \times ([\text{Na}^+] - 144) $$

where the reference value for mean plasma sodium concentration (144 mEq/L) is provided, and BE changes in plasma chloride concentration (BECl), which is calculated by use of the following equation:

$$ \text{BE}_{\text{Cl}} = 104 - ([\text{Cl}^-] + (144/[\text{Na}^+])) $$

where the reference values of the mean plasma concentrations of sodium (144 mEq/L) and chloride (104 mEq/L) are provided. It also includes BE changes in plasma protein concentration (BEalbumin), which is calculated by use of the following equation:

$$ \text{BE}_{\text{albumin}} = 0.28 \times 10 \times (3.3 - [\text{albumin}]) $$

where the reference value of the net charge at pH 7.43 (ie, 0.28 mEq/g of bovine albumin)9 and the reference value for mean plasma albumin concentration (3.3 g/dL) is provided, or as BE changes in plasma total protein concentration (BEprotein), which is calculated by use of the following equation:

$$ \text{BE}_{\text{protein}} = 0.17 \times 10 \times (7.0 - [\text{protein}]) $$

where the value of 0.17 mEq/g of bovine plasma protein is provided for the net charge at reference mean pH9, and the reference value for mean plasma protein concentration (7.0 g/dL) also is provided.

Estimates for the unmeasured strong anion concentra-
Sensitivity of plasma pH to changes in SID', PCO₂, and \(A_{tot}\)—Sensitivity of the dependent variable (plasma pH) to changes in the 8 factors of the Stewart strong ion model (SID', PCO₂, \(A_{tot}\), S, \(K'_i\), \(K_a\), the apparent dissociation constant for bicarbonate [\(K'_i\)], and the apparent dissociation constant for water [\(K_a\)]) and the 6 factors of the simplified strong ion model (SID', PCO₂, \(A_{tot}\), S, \(K'_i\), \(K_a\)) were conveyed by a spider plot, which graphically depicted the relationship between the dependent variable and percentage change in 1 factor while the remaining factors were held constant at typical values.

Using equation 3 (ie, the simplified strong ion model), the derivatives of pH with respect to the 3 independent factors SID', PCO₂, and \(A_{tot}\) of the strong ion approach were calculated⁶ to provide an index of the sensitivity of pH to changes in each of the independent factors. For SID', the following equation was used:

\[
\Delta pH/\Delta SID' = (1 + 10^{(pK_a – pH)/S})/(2.303) \left[S \times PCO_2 \times 10^{(pH – pK_a)/S} \right] \times \left[A_{tot} \times 10^{(pH – pK_a)/S} \right]
\]

For PCO₂, the following equation was used:

\[
\Delta pH/\Delta PCO_2 = (2.303) [A_{tot} \times 10^{(pH – pK_a)/S} + (S \times 10^{(pK_a – pH)/S})] – (S \times 10^{(pK_a – pH)/S})
\]

For \(A_{tot}\), the following equation was used:

\[
\Delta pH/\Delta A_{tot} = -1/[2,303 \times [S \times PCO_2 \times 10^{(pH – pK_a)/S} + (S \times 10^{(pK_a – pH)/S})] + [SID' \times 10^{(pH – pK_a)/S}])
\]

These 3 equations were solved by use of typical physiologic values for bovine plasma harvested from blood samples obtained from the jugular vein in which pH is 7.43, SID' is 44 mEq/L, PCO₂ is 43 mm Hg, S is (0.0307 mmolL/mm Hg, and \(pK'_i\) is 6.129 as well as by the use of calculated values for \(A_{tot}\) and \(pK_a\).

Results

Calculation of \(A_{tot}\) and \(K_a\) values for bovine plasma—Calculation of the first data set containing 7 data points from strong ion titration at 38 C of plasma from red-pied cows⁷ yielded values for \(A_{tot}\) of 25.0 mEq/L and \(K_a\) of 0.90 \(\times\) 10⁻⁷. The value for \(K_a\) at 37 C was calculated and found to be 7.01. This approximated the value calculated previously for bovine plasma.

Calculation of \(A_{tot}\) and \(K_a\) values, using in vitro CO₂ tonometry—Analysis of tonometry data for plasma from 6 healthy adult cattle provided values for \(A_{tot}\) (mean ± SD, 22.9 ± 9.0 mEq/L; range, 12.1 to 32.9 mEq/L) and \(K_a\) (mean, 0.9 ± 2.4 \times 10⁻⁷; range, 0.1 \times 10⁻⁷ to 5.9 \times 10⁻⁷). Measured SID' ranged from 38.3 to 41.7 mEq/L (mean, 40.5 ± 1.2 mEq/L), plasma total protein concentration ranged from 2.9 to 4.4 g/dl (mean, 3.7 ± 0.5 g/dl), and plasma albumin concentration ranged from 0.5 to 2.4 g/dl (mean, 0.9 ± 0.5 g/dl). Seven to 9 plasma samples from each animal were examined by use of tonometry. The pH ranged from 6.98 to 7.90, and PCO₂ ranged from 15 to 175 mm Hg. This data set provided much larger variability in the estimate for \(A_{tot}\) and \(K_a\) than those calculated by use of plasma from red-pied cows. Thus, although the mean estimates were similar, the \(A_{tot}\) and \(K_a\) values obtained from the data set reported by Lebeda and Bouda⁹ were used for validation.

Validation of calculated \(A_{tot}\) and \(K_a\) values, using data from in vivo studies—Calculated values of \(A_{tot}\) (7.6 times the albumin concentration) and \(K_a\) (0.87 \times 10⁻⁷) for bovine plasma were applied to data obtained from an in vivo study that involved 8 calves with acute mixed respiratory and metabolic acidosis. For the in vivo validation data set, pH ranged from 6.91 to 7.49, measured SID' ranged from 28.4 to 58.3 mEq/L, PCO₂ ranged from 38 to 195 mm Hg, and albumin concentration ranged from 2.4 to 3.1 g/dl. When the calculated values for \(A_{tot}\) and \(K_a\) derived from the data set of Lebeda and Bouda⁹ were used, a good-to-excellent correlation between pHcalc and pHmeas was observed for the 8 calves (mean R², 0.92; range, 0.79 to 0.99; Fig 1), and the regression equation relating pHcalc to pHmeas was not significantly different from the line of identity, as determined by use of the following equation:

\[
\text{pH}_{\text{calc}} = (0.95 ± 0.14) \times \text{pH}_{\text{meas}} - (0.41 ± 1.02)
\]

where the values indicated represented the mean ± SD.

This resulted in an apparent pKₐ for albumin of 7.210 at 25 C. Using equation 2, the estimated pKₐ value at 37 C was calculated and found to be 7.01. This approximated the value calculated previously for bovine plasma.

Figure 1—Scatter plot of the relationship between calculated pH and measured pH for plasma samples obtained from calves with experimentally induced mixed respiratory and metabolic acidosis during an in vivo study (left) and for plasma obtained from cattle during an in vitro study that involved the use of CO₂ tonometry (right). Each symbol represents values for 1 animal (in vivo study) or mean value (in vitro study). The solid line is the line of identity.
for the estimate. Mean difference between \(\text{pH}_{\text{calc}} \) and \(\text{pH}_{\text{meas}} \) was 0.02 ± 0.06.

Validation of calculated \(A_{\text{tot}} \) and \(K_a \) values, using data from in vitro studies—Calculated \(A_{\text{tot}} \) and \(K_a \) values were applied to data obtained from a published in vitro study that involved CO\(_2\) tonometry of bovine serum at 38 C. For the in vitro data set used for validation, pH ranged from 6.33 to 7.74, and PCO\(_2\) ranged from 23 to 710 mm Hg. When the calculated values for \(A_{\text{tot}} \) and \(K_a \) were used, an excellent correlation between \(\text{pH}_{\text{calc}} \) and \(\text{pH}_{\text{meas}} \) was observed (\(R^2, 0.992 \); Fig 1), but the regression equation relating \(\text{pH}_{\text{calc}} \) to \(\text{pH}_{\text{meas}} \) differed slightly from the line of identity, as determined by use of the following equation:

\[
\text{pH}_{\text{calc}} = (0.92 \pm 0.03) \times \text{pH}_{\text{meas}} + (0.59 \pm 0.20)
\]

where the values indicated represented the mean ± SE for the estimate, because linear regression analysis was performed only on 1 data set. Mean difference between \(\text{pH}_{\text{calc}} \) and \(\text{pH}_{\text{meas}} \) was 0.009 ± 0.051.

Quantifying unmeasured strong anion concentration in plasma—Blood gas values and results of serum biochemical analysis were available for 41 critically ill cattle with abomasal volvulus. The aforementioned equation was revised for albumin concentration, resulting in the following equation:

\[
\text{SIG}_{\text{albumin}} = (7.6 \times \text{albumin}) / (1 + 10^{(7.06 - \text{pH})}) - \text{anion gap}
\]

The aforementioned equation also was revised for total protein concentration, resulting in the following equation:

\[
\text{SIG}_{\text{total protein}} = (3.6 \times \text{total protein}) / (1 + 10^{(7.06 - \text{pH})}) - \text{anion gap}
\]

Examination of residual plots from all 6 linear regression equations identified data from 6 cows as statistical outliers, which were attributed to laboratory error or an increase in plasma strong anions other than chloride or \(\alpha \)-lactate. Therefore, analysis was conducted on data from only 35 cows with abomasal volvulus.

Of the 4 methods for quantifying the unmeasured strong anion concentration, the \(\text{SIG}_{\text{albumin}} \) equation provided the best fit for the data, as determined on the basis of \(R^2 \) values for the linear regression models (Fig 2; Table 1). This indicated that \(\text{SIG}_{\text{albumin}} \) provided the most accurate method for predicting unmeasured strong anion concentration (plasma lactate concentration) in cattle with abomasal volvulus.

Sensitivity of plasma pH to changes in SID\(^+\), PCO\(_2\), and \(A_{\text{tot}}\)—Analysis of the spider plot revealed that
plasma pH was most sensitive to changes in SID' (Fig 3). Furthermore, plasma pH was more sensitive to changes in Atot than to changes in Ks. The tangent to each line in the spider plot reflects the sensitivity of bovine plasma pH to that factor, whereby at the reference value for pH in samples obtained from the jugular vein (ie, pH 7.43), the following equation was used for SID':

\[\Delta pH/\Delta SID' = +0.014/(\text{mEq/L}) \]

At venous pH of 7.43, the following equation was used for PCO2:

\[\Delta pH/\Delta PCO_2 = -0.008/\text{mm Hg} \]

At venous pH of 7.43, the following equation was used for Atot:

\[\Delta pH/\Delta A_{tot} = -0.0096/\text{(mM/L)} = -0.035/(g \text{ of total protein/dl}) \]

Interestingly, values for Ks or Kw' did not alter pH, indicating that neither factor influenced plasma pH.

![Spider plot revealing the dependence of plasma pH on changes in the 3 independent variables (strong ion difference [SID'], PCO2, and total concentration of nonvolatile weak acids [Atot]) and 5 constant variables (plasma solubility of CO2 [S], the apparent dissociation constant for carbonic acid [K1'], effective dissociation constant for nonvolatile weak acids [Ks], the apparent dissociation constant for bicarbonate [Kb], and the apparent dissociation constant for water [Kw']) of the Stewart strong ion model]. Figure 3: The spider plot was obtained by systematically varying 1 input variable while holding the remaining input variables at their reference values for bovine plasma. Values for input variables were as follows: SID', 4.4 mEq/L (open triangle); PCO2, 43 mm Hg (open square); Atot, 25 mM/L (solid circle); S, 0.307 mEq/L/mm Hg (open square); Ks, 7.43 X 10^-6 (open square); Kb, 0.87 X 10^-1 (solid square); K1', 6.0 X 10^-7 (open circle); and Kw', 4.4 X 10^-14 (solid triangle). Notice that S, Ks, and PCO2 have the same symbol, which is attributable to the fact that the influence of S and Ks on plasma pH cannot be separated from that of PCO2 because the 3 factors always appear as 1 expression. Large changes in 2 factors (Ks and K1') did not change plasma pH, indicating that the Stewart strong ion model has too many variables.

Discussion

Analysis of the findings of the study reported here indicated that the Atot and Ks values for bovine plasma were similar to those for human plasma but differed from those for equine plasma. This confirms findings and suspicions that species-specific Atot and Ks values are required. The finding that the Atot and Ks values for bovine and human plasma are similar is consistent with observations that the pH-PCO2 coordinates for the base-excess curve of bovine plasma are parallel to those for human plasma.

There are 2 main reasons to apply the strong ion approach to acid-base disturbances in cattle: to identify the mechanism for a change in acid-base balance and thereby focus treatment on the inciting cause and to quantify unmeasured strong anion concentration in plasma. The strong ion approach should never be used to calculate plasma pH, because pH can be measured much more accurately than it can be calculated, as evidenced by the large degree of scatter around the line of identity (Fig 1). Sensitivity analysis further emphasizes the accuracy with which SID' must be measured to calculate plasma pH, because a change of 1 mEq/L in SID' at reference value pH (ie, 7.43) will change pH by 0.014 (Fig 3). Inaccurate measurement of SID' was the most likely reason for the large scatter in the calculated pH values for the identity line, although some of the scatter also may have been attributable to calculating the Atot value from the plasma albumin concentration, because the plasma phosphorus concentration is higher in calves than in adult cattle.

The major inaccuracy with the strong ion approach is obtaining an accurate value for SID'. Determination of SID' requires identification and measurement of all strong ions in plasma, which is an impossible task because unidentified strong anions such as lactate, β-hydroxybutyrate, acetoacetate, nonesterified fatty acids, acetate, and sulfate may be increased in sick cattle (Appendix). Despite this shortcoming, an estimate of SID' can be obtained by determining the plasma concentration of + strong ions (sodium, potassium, chloride, and lactate), whereby SID' = [Na+] + [K] - [Cl] - [lactate]. Additional strong cations (calcium and magnesium) could be included in the calculation of SID', although it remains to be determined whether their inclusion provides useful additional information when estimating a value for SID'. It should be recognized that regardless of which strong cations and anions are included in the calculation of SID', these calculations provide only an estimate for SID', because differing analytical methods for determination of concentrations of sodium, potassium, chloride, and lactate result in quantitatively large interlaboratory differences in SID'; each method assumes that the sum of the unmeasured strong cations equals the sum of the unmeasured strong anions; unmeasured strong ions may become quantitatively important in specific pathologic states such as β-hydroxybutyrate and acetoacetate in ketoacidosis and sulfate in uremia; and each individual measurement is subject to error, creating a much larger cumulative error in SID'. Therefore, the terms measured SID' or estimated SID' should be used whenever the strong ion approach is
used clinically or experimentally. Use of the term SID, instead of measured SID, is misleading in that it implies that all strong anions and cations have been accurately measured, which is impossible. An example of the need for an accurate estimate of SID was provided in a study of acid-base disturbances in diarrheic calves, whereby SID was incorrectly calculated by use of the following equation: SID = [Na+] + [K+] – [Cl–]. This produced the inevitable conclusion by the authors that measurement of SID as a means of evaluating the acid-base status of diarrheic calves may be so misleading that it could be dangerous. This statement is certainly true when SID is calculated only from the sodium, potassium, and chloride concentrations in animals with increased plasma concentrations of strong anions such as lactate, acetate, \(\beta \)-hydroxybutyrate, acetoacetate, nonesterified fatty acids, and sulfate. In other words, unless an accurate estimate of SID is available, the strong ion approach will have limited clinical application in the diagnosis and treatment of acid-base disorders in sick cattle, with the 1 exception being that the strong ion approach can quantify the difference between unmeasured strong cation and anion concentrations in plasma.

An alternative method for estimating the SID value of bovine plasma makes use of the following equation:

\[
\text{SID}_{\text{bovine}} = \text{SID}_{\text{human}} + \text{BE}_{\text{plasma}} = 41.7 + \text{BE}_{\text{plasma}}
\]

This method is only valid when the concentrations of plasma nonvolatile buffers (albumin, globulin, and inorganic phosphate) are within reference ranges, because for these circumstances, the change in SID from its reference value is equivalent to the change in base excess from its reference value. Base excess can be calculated, using the Siggaard-Andersen empirical equation derived from a nomogram, which simplifies to the following equation for plasma with a hemoglobin concentration of 0 g/dL:

\[
\text{BE}_{\text{plasma}} = \left(0.0307 \times \text{PCO}_2 \times 10^{\text{pH} - 6.1220} - 24.4 + (7.7 \times (\text{pH} - 7.40))\right)
\]

Identifying unmeasured strong anions in plasma is clinically valuable, because it alerts clinicians to lactic acidosis, ketoacidosis, or uremic anions as well as potential ingestion and absorption of toxic chemicals that are fully dissociated at physiologic pH. Analysis of the results of the study reported here suggests that the SIG provides the best method for quantifying unmeasured strong anion concentration in bovine plasma. Although the Fencl base-excess approach has been applied to acid-base disturbances in domestic animals, the study reported here appears to be only the third study to formally evaluate the Fencl method for quantifying unmeasured strong anions in plasma. In a study42 in pigs, the Fencl method was found to be a biased and imprecise predictor of unmeasured strong ion concentration, whereas in a study43 of critically ill pediatric patients, plasma lactate concentration was better correlated with BE by use of the Fencl base-excess approach (\(R^2 \), 0.55) than with anion gap (\(R^2 \), 0.41), which was similar to the results of the study reported here in critically ill cattle. Because the Fencl base-excess approach is based on laboratory data similar to that used for the SIG but has reduced explanato-

ry power (lower \(R^2 \); Fig 2, Table 1) while ignoring the effect that pH has on net protein and phosphate charge and assuming a constant potassium concentration, SIG appears to provide the best method for quantifying unmeasured strong anion concentration in bovine plasma.

Value of the slope for the SIG equation was not significantly different from \(-1\), but the intercept value was significantly different from 0, indicating that the sum of the positive charges on unmeasured strong cations (calcium and magnesium) exceeded the sum of the negative charges on unmeasured strong anions (sulfate, ketoacids, volatile fatty acids, and nonesterified fatty acids) by approximately 3 mEq/L (Table 1). We reported a similar finding in horses. Accordingly, the following equation is recommended for quantifying the unmeasured strong anion concentration in bovine plasma:

\[
\text{SIG} = (7.6 \times \text{[albumin]/(1 + 10^{7.40 - \text{pH}} - 3)}) - \text{anion gap}
\]

The \(A_{\text{tot}} \) and \(K_a \) values calculated in the study reported here suggest that the negative charge of protein and phosphate in bovine plasma at pH 7.43 is 17.5 mEq/L, assuming total protein concentration is 7.0 g/dL. The plasma bicarbonate concentration is 26.4 mEq/L when pH is 7.43 and PCO\(_2\) is 43 mm Hg. The electroneutrality equation from the simplified strong ion model (SID = \([\text{HCO}_3^-] - [A^-] = 0\)) indicates that SID is approximately equal to \([\text{HCO}_3^-] + [A^-] = 43.9\) mEq/L. Therefore, the calculated \(A_{\text{tot}} \) and \(K_a \) values are consistent with the initial assumption that SID is approximately 44 mEq/L. The calculated \(A_{\text{tot}} \) and \(K_a \) values also suggest that net protein charge in bovine plasma is 14.6 mEq/L, assuming that the typical net phosphate charge is 2.9 mEq/L (equivalent to a phosphate concentration of 5 mg/dL at pH 7.43; Appendix). This estimate for the net protein charge of bovine plasma was slightly greater than that obtained by Darrow and Hartman46 (12.1 mEq/L) by use of the assumptions that albumin concentration is 3.3 g/dL, total protein concentration is 7.0 g/dL, and pH 7.43. Details were not provided concerning the experiments performed by those authors, but they did indicate that they suspected their values were probably not correct. Accordingly, analysis of results of the study reported here suggests that the normal net charge of bovine plasma protein is approximately 15 mEq/L.

A value for \(A_{\text{tot}} \) was estimated from plasma albumin or total protein concentration, using the assumption of a linear relationship with a value of 0 for the intercept between \(A_{\text{tot}} \) and the albumin or total protein concentration. This approach, although validated, is an oversimplification of the relationship between \(A_{\text{tot}} \) and its 3 main constituents (concentrations of albumin, globulin, and inorganic phosphate), because it assumes equal contributions to \(A_{\text{tot}} \) on a grams-per-deciliter basis. Therefore, the approach is only valid when plasma albumin, total protein, and phosphate concentrations are within reference ranges or when the percentage changes in the 3 constituents of \(A_{\text{tot}} \) are similar in magnitude and direction. Because albumin concentration provides the greatest contribution to
the value of A_{tot} and provides a more accurate prediction of the strong ion gap than does total protein concentration, it appears reasonable to use plasma albumin concentration as an index for the true value for A_{tot} (Table 1). It remains to be determined whether compartmentalizing the value for A_{tot} into albumin, globulin, and phosphate components will improve the clinical utility and accuracy of the strong ion approach to acid-base balance.

The correct units for A_{tot} are millimoles per liter, not milliequivalents per liter.1,10 Millimoles refers to dissociable groups capable of donating or accepting a proton, because the strong ion approach assumes that plasma nonvolatile buffer mass, rather than charge, is conserved.3,10,11 Moreover, using the units of milliequivalents per liter for A_{tot} is incorrect, because the assumption of mass conservation indicates the following: $[A_{sol}] = [HA] + [A^-]$, where all values are reported in millimoles per liter. Because another assumption in the strong ion approach is that A^- is a univalent base and HA is not ionized,1,6 the following equation also is true:

$$[A_{sol}] = (0 \times [HA]) + (-1 \times [A^-]) = [A^-]$$

where the value of A^- is in millimoles per liter. It therefore follows that the value for A_{sol} in millimoles per liter is greater than the value for A_{tot} in milliequivalents per liter.

The mechanism for acid-base disturbance in calves with diarrhea continues to be actively investigated. Although acidemia and metabolic acidosis in diarrheic calves were originally attributed to severe dehydration and hyperlactatemia, it has been documented that severe dehydration (>12% of body weight) produces only mild acidemia and small increases in plasma lactate concentration, and that acidemia results primarily from decreased SID+ in response to hypoproteinemia and increased strong anion concentration such as D-lactate from ruminal or intestinal fermentation of milk.1,11,13

Appropriate application of the strong ion approach and calculation of the SIG in calves with diarrhea should improve our understanding of the mechanism for metabolic acidosis, thereby facilitating treatment. The strong ion approach should also prove useful in clarifying the mechanism for the effects of nutrition on acid-base balance; the effects of dietary cation-anion balance on rumen pH, serum electrolyte concentrations, and acid-base balance in prevention of hypocalcemia in dairy cows; and the acid-base effects of increased plasma β-hydroxybutyrate and acetocetate concentrations in cows with primary acetonemia.5

Finally, the Stewart strong ion model states that plasma pH is a function of 8 factors (SID+, PCO2, A_{tot}, $K_1^'$, S, K_2, K_3, and K_w'); whereas the simplified strong ion model states that plasma pH is a function of 6 factors (SID+, PCO2, A_{tot}, $K_1^'$, S, and K_w').6 The spider plot includes 2 additional factors (K_2 and K_w') in the Stewart strong ion model (Fig 3). Although K_2 and K_w' have been documented algebraically to be redundant when the strong ion approach is used,6 evaluation of the spider plot provides strong graphic evidence that the value for K_2 or K_w' does not alter pH under physiologic conditions, indicating that neither factor influences plasma pH, and, therefore, should be neglected. When comparing models, the preferred model should have greater explanatory power, mathematical simplicity, or theoretic elegance.4 Because the simplified strong ion model is mathematically simpler than the Stewart strong ion model and has similar explanatory power,1,16 application of Occam’s razor indicates that the simplified strong ion model should be preferred when the strong ion approach is used.

Appendix

Categorization of simple ions in bovine plasma and approximate values for their reference concentrations in jugular venous blood samples with pH 7.43, PCO2 of 43 mm Hg, strong ion difference of 44 mEq/L, total protein concentration of 7 g/dl, and phosphate concentration of 5 mg/dl.

| Buffer ions (mEq/L) | Cations—Sodium, 144.0; potassium, 4.5; calcium, 4.5; magnesium 1.7; ammonium, 0.1; total cations, 154.8. | Anions—Chloride, 104.0; sulfate 1.6; lactate, 0.9; β-hydroxybutyrate, 0.8; acetocetate, 0.2; nonesterified fatty acids, 0.4; acetate, 1.5; propionate, 0.08; butyrate, 0.04; urate, 0.5; succinate, 0.5; pyruvate, 0.1; total anions, 110.8. |
| Volatile anions—Bicarbonate, 26.4. | Nonvolatile anions—Protein, 14.6; phosphate, 2.9; citrate, 0.2; total nonvolatile anions, 17.7. |

Values were derived from data obtained by the author for this study and data derived from studies reported elsewhere.4,14 The ionic contribution of amino acids was ignored in this categorization, because at reference pH (ie, pH 7.40), the sum of positive and negative charges for free amino acids is approximately 0.

References

8. Constable PD. Clinical assessment of acid-base status: com-