Superficial corneal ulcers are encountered in veterinary and human patients and are characterized by loss of corneal epithelium, exposure of corneal stroma without stromal loss, and, often, marked discomfort. They are readily diagnosed by slit-lamp biomicroscopy and fluorescein retention by the exposed corneal stroma. Factors such as conformation-related exposure, adnexal disease, or tear deficiency can reduce protection of the corneal surface and contribute to epithelial cell damage or loss, but are not always evident on examination. In dogs, a form of chronic superficial corneal ulceration with no identifiable cause or complicating factor is common. Such ulceration is often referred to as indolent ulcer or SCCED. This disorder is most commonly diagnosed in middle-aged to older dogs, and the Boxer breed is overrepresented. The cardinal clinical feature unique to SCCEDs is a lip of non-adherent epithelium surrounding the epithelial defect. Debridement of this loose tissue is diagnostic and a common component of therapeutic approaches used for this condition.

The pathogenesis of SCCED remains poorly understood, with some proposing that it represents a primary epithelial abnormality, while others claim that stromal dysfunction or anatomic derangement is causative or contributory. It is possible that both contribute to the pathogenesis of this disease, maybe in different degrees, depending on chronicity. Because of the ill-defined pathogenesis, definitive treatment of SCCED remains controversial. However,
in combination with standard topical antimicrobial treatment and corneal epithelial debridement, anterior stromal puncture techniques such as punctate or grid keratotomy or diamond-burr debridement are widely used, with or without bandage contact lenses, and are associated with variable clinical success rates.1–4,7–11

Adjunctive use of topical treatments is associated with favorable effects on healing rates of SCCEDs.3,12–18 In humans, serum has been used as an adjunctive topical treatment for many ocular surface diseases, especially ulcerative corneal disease. In particular, topical application of serum has been associated with improvements in corneal healing rates and comfort in patients with persistent corneal epithelial defect, which is a disease with a similar clinical appearance to SCCED.19–29 The clinical benefits of topical treatment with serum are believed to be at least partially due to high concentrations of numerous growth factors, particularly epidermal growth factor, as well as vitamin A, fibronectin, and others.30 Collectively, the abundance of such components in serum is believed to promote epithelial health and wound healing capacity.25,31

Serum has also been used as a therapeutic agent in veterinary patients, particularly those with corneal malacia, wherein the antiprotease activity of serum reduces enzymatic corneal stromal degradation.32,33 To the authors’ knowledge, however, no published reports exist of studies evaluating the effect of topically applied serum in dogs with SCCED. Therefore, the purpose of the multicenter, randomized, double-masked clinical trial reported here was to assess the effects on corneal wound healing of topical application of undiluted serum as an adjunct to standard treatment in dogs with SCCED. We hypothesized that, relative to placebo, adjunctive treatment with topically applied, undiluted serum would promote wound healing and shorten time to reciliation of spontaneously arising SCCED in client-owned dogs.

Materials and Methods

Animals

Dogs that received a diagnosis of SCCED at Veterinary Ophthalmology Services Inc (Little Falls, NJ), Animal Eye Care (Fremont, Calif), or the Veterinary Ophthalmology Service at the University of California-Davis William R. Pritchard Veterinary Medical Teaching Hospital between January 1, 2008, and January 1, 2010, were considered for inclusion in the study. All dogs received a complete ophthalmic examination, including slit-lamp microscopy, indirect ophthalmoscopy, and fluorescein application. The diagnosis of SCCED was made on the basis of evidence of corneal epithelial loss without stromal loss present for > 7 days, surrounded by nonadherent epithelium, and lacking an identifiable underlying or perpetuating cause. Exclusion criteria included evidence of stromal loss, malacia, or infection; bilateral SCCEDs at the time of diagnosis; clinical evidence of concurrent tear film deficiency; prior treatment with grid or punctate keratotomy; or prior topical treatment with serum.

All protocols used in the study were approved by the University of California-Davis Institutional Animal Care and Use Committee, and enrollment of dogs adhered to the guidelines established by the Veterinary Medical Teaching Hospital’s Clinical Trials Review Board. Informed consent was obtained in writing from all owners prior to enrollment of their dog in the study. All study-related drugs and materials were provided to owners without charge. All other fees were charged at the discretion of the attending veterinarian.

Preparation of serum and placebo

Serum for use in this study was obtained from blood samples from 16 adult client-owned dogs, each weighing > 25 kg (55 lb) and judged to be healthy on the basis of history and results of physical examination, CBC, serum biochemical analysis, and serologic tests for Rickettsia rickettsii, Babesia gibsoni, Ehrlichia canis, Anaplasma phagocytophila, Babesia canis, Babesia gibsoni, and Dirofilaria immitis. A volume of blood not exceeding 10% of total blood volume (as estimated on the basis of body weight) was collected from each dog via jugular venipuncture and placed into sterile 10-mL blood collection tubes (range in total volume, 50 to 150 mL/donor). Blood samples were refrigerated at 4°C for 2 hours and centrifuged at 3,000g for 15 minutes, and serum was manually aspirated. Undiluted serum from all donors was pooled and divided into 2-mL aliquots, each of which was placed into a sterile 3-mL eye-dropper bottle and stored at –20°C for up to 24 weeks until distribution to dog owners for topical ophthalmic use. Blood collection and serum processing were performed by a sterile technique, with all processing performed under a laminar flow hood. A commercial saline (0.9% NaCl) solution–based eyewash was used as the placebo, with 2-mL aliquots placed in eye-dropper bottles identical to those used to contain serum by use of the same sterile technique, and similarly stored at –20°C for up to 24 weeks. Sets of 4 bottles of serum or placebo were each assigned a unique identification number randomly generated by commercial software.3 Prepared aliquots of frozen serum and placebo were shipped overnight on dry ice to the 2 participating private practices.

Treatment protocol

All dogs enrolled in the study received identical treatment except for topical application of serum or placebo (Figure 1). At study entry, routine epithelial debridement of the SCCED was performed for all dogs in both treatment groups. Briefly, 1 drop of 0.5% proparacaine solution was applied to the ulcerated eye, and approximately 1 minute later, a sterile cotton-tipped applicator was used to debride all nonadherent epithelial tissue from the corneal surface. All
affected eyes were also treated topically with 0.3% tobramycin ophthalmic solution (1 drop to the affected eye, 3 times daily) and 1% atropine sulfate ophthalmic solution (1 drop to the affected eye, once daily).

At enrollment, each dog was assigned a patient number and the owner was provided with a set of 4 dropper bottles with the corresponding randomly assigned number. Thus, both the treating clinician and owner were masked regarding the study agent (serum or placebo) prescribed. Owners were instructed to apply 1 drop of the study agent to the affected eye 3 times daily (equal spacing of treatments not requested) until recheck examination and, when administering multiple topical medications, to wait 5 minutes between doses and to always administer the study agent last. Owners were instructed to keep unused bottles frozen until use and to thaw 1 of the 4 bottles of study agent provided, to use this bottle for 1 week (keeping the bottle refrigerated at all times when not in use), and then to discard that bottle and repeat the process weekly. An Elizabethan collar was provided to prevent self-trauma by dogs during the treatment period.

Dogs were reexamined at the 3 participating veterinary ophthalmology clinics at weekly intervals following initiation of treatment. At each visit, complete ophthalmic examination and fluorescein staining were performed in the same manner as at baseline. Dogs with healed ulcers (diagnosed by failure of the cornea to retain fluorescein and absence of nonadherent epithelial tissue) exited the study protocol and were censored from subsequent data analysis at that point. Dogs with persistent ulceration remained in the study and underwent another epithelial debridement (as described for baseline), followed by grid keratotomy performed with a 25-gauge needle. Topical administration of tobramycin, atropine, and a new bottle of the study agent and placement of the Elizabethan collar were continued as previously described.

All clinicians were issued standardized forms (Supplemental Appendix S1, available at avmajournals.avma.org/doi/suppl/10.2460/javma.250.9.1014) to record signalment; treatment identity number; pertinent medical history; ophthalmic examination findings, including approximate ulcer area prior to and following epithelial debridement (estimated as the percentage of total corneal area); and degree of corneal vascularization scored on a semiquantitative scale (0 = no corneal vessels noted, 1 = vessels extended ≤ 50% of the distance from the limbus to the ulcer edge, 2 = vessels extended > 50% of the distance from the limbus to the ulcer edge, 3 = vessels reached the ulcer edge, and 4 = vessels or fibrovascular tissue extended into the ulcer bed). Distances were estimated before and following debridement, with only the latter used for data analysis. Response to treatment and any adverse reactions were also noted at each recheck evaluation.

Statistical analysis

Distributions and values of various dog characteristics were compared between the serum- and
placebo-treated groups by means of χ² analysis (sex, Boxer breed vs non-Boxer breed, right vs left eye, and presence of concurrent systemic disease), the Fisher exact test (neuter status, purebred vs mixed breed, previous topical medication use, prior epithelial debridement, concurrent endocrinopathy, prior SCCED, and prior ocular disease), 2-tailed t test (age), or Mann-Whitney rank sum test (duration of clinical signs prior to referral, time from first veterinary visit to referral, vascularization score at baseline, and ulcer size at baseline). Time to reepithelialization was compared between the serum- and placebo-treated groups by means of the log rank survival analysis and Mann-Whitney rank sum test. Correlations between time to reepithelialization and various factors were assessed by calculation of the Spearman (ρ; vascularization score) or Pearson (r; all other factors) correlation coefficients, and regression lines were calculated with the least squares method. Change in vascularization score throughout the study was compared between the 2 treatment groups by means of the Mann-Whitney rank sum test.

All normally distributed data are reported as mean ± SD; nonnormally distributed data are reported as median (IQR). Missing or unspecified data were omitted from all analyses. For all analyses, statistical software was used and a value of P < 0.05 was considered significant.

Results

Forty-one dogs with unilateral SCCED and comprising 18 breeds were enrolled in the study; 22 dogs were assigned to receive heterologous serum and 19 to receive saline solution (placebo). Mean ± SD age did not significantly (P = 0.82) differ between dogs assigned to the treatment (9 ± 2.8 years; range, 4 to 15 years) or placebo (8.8 ± 2.9 years; range, 1.5 to 16 years) group, nor were any significant differences identified between groups in sex, neuter status, affected eye distributions, or other characteristics (Table 1). Although Boxers represented 37% (15/41) of all dogs enrolled, the proportion assigned to the treatment group (6/22 [27%]) did not differ significantly (P = 0.31) from that assigned to the placebo group (9/19 [47%]).

No significant (P = 0.32) difference was detected between the proportion of serum-treated dogs (1/22 [5%]) and placebo-treated dogs (3/19 [16%]) with a

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%) of serum-treated dogs</th>
<th>No. (%) of saline-treated dogs</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>0.89</td>
</tr>
<tr>
<td>Male</td>
<td>11 (50)</td>
<td>10 (53)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>11 (50)</td>
<td>9 (47)</td>
<td></td>
</tr>
<tr>
<td>Neutering status</td>
<td></td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>Neutered or spayed</td>
<td>19 (86)</td>
<td>16 (84)</td>
<td></td>
</tr>
<tr>
<td>Sexually intact</td>
<td>2 (9)</td>
<td>3 (16)</td>
<td></td>
</tr>
<tr>
<td>Unspecified</td>
<td>1 (5)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Breed</td>
<td></td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>Boxer</td>
<td>6 (27)</td>
<td>9 (47)</td>
<td></td>
</tr>
<tr>
<td>Other breed</td>
<td>16 (73)</td>
<td>10 (53)</td>
<td></td>
</tr>
<tr>
<td>Breed status</td>
<td></td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>Pure breed</td>
<td>20 (91)</td>
<td>16 (84)</td>
<td></td>
</tr>
<tr>
<td>Mixed breed</td>
<td>2 (9)</td>
<td>3 (16)</td>
<td></td>
</tr>
<tr>
<td>Eye affected</td>
<td></td>
<td></td>
<td>0.85</td>
</tr>
<tr>
<td>Right</td>
<td>10 (45)</td>
<td>9 (47)</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>12 (55)</td>
<td>10 (53)</td>
<td></td>
</tr>
<tr>
<td>Prior topical ophthalmic medication</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Yes</td>
<td>20 (91)</td>
<td>18 (95)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2 (9)</td>
<td>1 (5)</td>
<td></td>
</tr>
<tr>
<td>Prior epithelial debridement</td>
<td></td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>Yes</td>
<td>3 (14)</td>
<td>1 (5)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>19 (86)</td>
<td>18 (95)</td>
<td></td>
</tr>
<tr>
<td>Concurrent systemic disease</td>
<td></td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>Yes</td>
<td>5 (23)</td>
<td>7 (37)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>17 (77)</td>
<td>12 (63)</td>
<td></td>
</tr>
</tbody>
</table>

Other treatments were identical for both treatment groups, and recheck examinations were performed once weekly for 4 weeks (See Figure 1). Values of P < 0.05 were considered significant.
concurrent endocrinopathy known or suspected to influence corneal wound healing, such as diabetes mellitus, hypothyroidism, or hyperadrenocorticosteronism. Concurrent or prior ocular diseases were reported or detected in 4 (18%) serum-treated dogs and 4 (21%) placebo-treated dogs ($P = 1.00$). These diseases included chronic bilateral immature cataracts (1 serum-treated dog), bilateral cataract surgery > 2 years previously (1 placebo-treated dog), cherry-eye surgery as a juvenile (1 serum-treated dog), and ipsilateral eyelid tumor removal 1 to 2 years previously (1 serum-treated dog). One (5%) serum-treated dog and 3 (16%) placebo-treated dogs had a prior diagnosis of SCCED ($P = 0.32$).

Duration of clinical signs prior to referral was not recorded for 1 serum-treated dog. For the remaining 40 dogs for which this information was available, no significant ($P = 1.00$) difference in median duration of clinical signs prior to referral was detected between serum-treated dogs (4 weeks; IQR, 3 to 6 weeks) and placebo-treated dogs (4 weeks; IQR, 2.5 to 7 weeks). Median (IQR) interval between the first treatment by a veterinarian and study enrollment was 2.6 weeks (0.9 to 10.2 weeks) for serum-treated dogs and 2.4 weeks (1.3 to 7.4 weeks) for placebo-treated dogs ($P = 0.89$). Although 93% of dogs had received medical treatment for their SCCED prior to study enrollment, the proportions of previously treated dogs in the serum-treated group (20/22 [91%]) and placebo-treated group (18/19 [95%]) were not significantly ($P = 1.00$) different.

Prior topical ophthalmic medications prescribed were similar for both treatment groups and included antimicrobials (20 serum-treated dogs and 17 placebo-treated dogs), atropine (9 serum-treated dogs and 7 placebo-treated dogs), NSAIDs (1 serum-treated dog), and a tear supplement (1 serum-treated dog). A combined antimicrobial-dexamethasone ophthalmic medication (formulation unspecified) was administered topically to 2 placebo-treated dogs prior to referral. Anti-inflammatory drugs were administered orally prior to referral as a treatment for SCCED or a concurrent condition and included NSAIDs (4 serum-treated dogs and 1 placebo-treated dog) or a corticosteroid (1 serum-treated dog). Corneal epithelial debridement was performed prior to study enrollment for 3 (14%) serum-treated dogs and 1 (5%) placebo-treated dog ($P = 0.61$). At study entry, neither median grade of corneal vascularization (1; IQR, 0 to 2.25; $P = 0.69$) nor ulcer size (percentage of corneal area; 17%; IQR, 11% to 26%; $P = 0.57$) differed significantly between serum-treated and placebo-treated dogs.

No owners reported difficulty with medication administration or noncompliance with the treatment prescribed during the course of the study, and no adverse reactions to any topically applied medications or study agents were reported by owners or noted by clinicians at recheck examinations. All SCCEDs in both treatment groups healed within the 4-week study period, and no complications attributable to debridement or grid keratotomy (eg, corneal malacia, stromal loss, or corneal perforation) or to the topically applied treatments were reported. Median time to reepithelialization was not significantly ($P = 0.99$) different between the serum-treated (2 weeks; IQR, 1 to 2 weeks) and placebo-treated dogs (2 weeks; IQR, 1 to 2 weeks). Kaplan-Meier survival analysis also failed to reveal a significant ($P = 0.75$) difference in time to reepithelialization between the 2 treatment groups (Figure 2).

For serum-treated dogs, median time to reepithelialization was not significantly ($P = 0.23$) different between Boxers (2 weeks; IQR, 1.75 to 2.25 weeks) and non-Boxers (2 weeks; IQR, 1 to 2 weeks). Likewise, for placebo-treated dogs, mean time to reepithelialization did not differ significantly ($P = 0.27$) between Boxers (mean ± SD, 1.6 ± 0.5 weeks) and non-Boxers (2 ± 1.1 weeks). Regardless of treatment group, 16 of 41 (39%) dogs had reepithelialization with debridement only (8/22 [36%] receiving serum, and 8/19 [42%] receiving placebo). In all dogs in both treatment groups, corneal vascularization scores either remained the same or increased between study entry and reepithelialization, but no significant ($P = 0.75$) difference was detected in median corneal vascularization score at the time of reepithelialization between serum-treated dogs (2; IQR, 0.75 to 3) and placebo-treated dogs (2; IQR, 0 to 3). Median change in vascularization score between study entry and reepithelialization was not significantly ($P = 0.50$) dif-

![Figure 2](link)
ferent between serum-treated dogs (0; IQR, 0 to 1) and placebo-treated dogs (0; IQR, 0 to 1).

Irrespective of whether eyes were treated with serum or placebo, significant and direct positive correlations were detected between time to reepithelialization and vascularization score at study entry, vascularization score at time of reepithelialization, and ulcer area at study entry (Figure 3). Time to reepithelialization in serum- or placebo-treated eyes was not significantly \((P \geq 0.10)\) correlated with dog age.

Figure 3—Scatterplots and regression lines of relationships between time to reepithelialization and vascularization score at study entry (A, B), vascularization score at time of reepithelialization (C, D), and ulcer area at study entry (E, F) for 41 eyes of client-owned dogs with SCCEDs treated topically with serum (n = 22; A, C, E) or placebo (saline solution; 19; B, D, F) 3 times daily until corneal reepithelialization. Other treatments were identical for both treatment groups, and recheck examinations were performed once weekly for 4 weeks. Values of correlation coefficients and associated \(P\) values are provided. Values of \(P < 0.05\) were considered significant. See Figure 1 for study design.
activity when stored at –20°C for 15 minutes, pooled all samples, and stored them at –20°C for < 6 months prior to use.

Clinical evaluations in the present study were performed weekly, primarily to offer owners a convenient recheck interval. Although this likely reflects a typical clinical situation, evaluation at shorter intervals would have provided greater accuracy regarding the rate of reepithelialization and may have altered the significance of some outcomes assessed.

Concurrent endocrine diseases such as diabetes mellitus, hyperadrenocorticism, and hypothyroidism with the potential to influence corneal wound healing were uncommon in both treatment groups of the present study. However, of the 3 dogs with endocrinopathies, all received the placebo treatment and all had reepithelialization within 3 weeks after treatment began. It is noteworthy that the 1 dog with diabetes mellitus had the longest time to reepithelialization (3 weeks) of these dogs.

Delivery of serum-borne factors via spontaneously arising corneal vessels is a desirable therapeutic effect of surgical procedures such as conjunctival pedicle grafting and corneal vascularization may exist in 58% to 64% of dogs with SCCED. Therefore, it is intriguing to consider the semiquantitative data from the present study regarding extent of spontaneous corneal vascularization at study entry and at healing. Regardless of treatment group, a significant and direct positive correlation was identified between vascularization scores and time to reepithelialization (ie, increased vascularization was associated with longer time to healing). As such, our data failed to support the supposition that increased vascularization and delivery of serum-borne factors are associated with faster healing; however, the design of the present study did not permit investigation of whether this relationship was causal.

It is also possible that increased vascularization and ulcer chronicity both result from another primary factor that slows healing. A similar significant and direct positive correlation was observed between ulcer size and time to reepithelialization. However, these data were more difficult to assess because dimensions were estimated on the basis of hand-drawn clinical diagrams and because poor epithelial adhesion means that ulcer size can change considerably as soon as the epithelium exfoliates or is debrided. In future studies, examination with digital caliper measurement, confocal microscopy, anterior segment optical coherence tomography, or digital image analysis of clinical photographs of fluorescein-stained eyes would provide more objective and precise means of determining ulcer size.

Numerous studies involving humans with persistent corneal epithelial defects have revealed beneficial effects of topically applied serum on epithelial healing, but epithelial deficiency may not be a primary contributor to the pathogenesis of SCCED in dogs. Although abnormal histologic features have been demonstrated in the epithelium of
up to 94% of dogs with SCCED, similar findings have also been reported for dogs with chronic, experimentally induced corneal wounds. Furthermore, the unique corneal stromal histologic features of SCCED (presence of a hyalinized superficial stromal membrane and an abnormal plexus of perilesional corneal nerves) and clinical success of anterior stromal alteration procedures more strongly suggest a primary stromal abnormality.

Despite evidence supporting a primary stromal defect in SCCEDs, as many as 50% of dogs will have reepithelialization without stromal alteration following debridement of nonadherent epithelium alone. This previously reported finding was supported by data obtained in the study reported here, in which 39% of enrolled dogs, regardless of treatment group, had corneas that healed with debridement alone. These data suggested that stromal abnormalities may not prevent healing of all SCCEDs, and veterinarians should consider debridement alone prior to pursuing a stromal alteration procedure.

The benefit of topical serum application in the treatment of SCCEDs likely depends on a number of factors. Clinical success in studies of humans with persistent corneal epithelial defects is frequently attributed to supplementation of the ocular surface with high concentrations of biologically active growth factors. It is likely, however, that the concentration of growth factors at the ocular surface is substantially influenced by species and disease process. In a placebo-controlled study of dogs with nonhealing corneal erosions, topical administration of epidermal growth factor improved healing rate, but the concentration of epidermal growth factor at the ocular surface in those dogs was not determined. Another investigation revealed a low tear concentration of transforming growth factor β in dogs with SCCED; in a subsequent study, topical and oral administration of tetracyclines had a positive effect on healing of SCCEDs, putatively through the modulation of growth factors including transforming growth factor β. In another study, high concentrations of nerve growth factor were identified in the tears, corneas, and lacrimal glands of dogs with experimentally induced corneal wounds, but topical application of additional exogenous nerve growth factor failed to accelerate reepithelialization. Collectively, these varied results suggest that the benefit of growth factor supplementation would be best understood with a more complete characterization of the ocular surface microenvironment in dogs with SCCEDs.

Results of the present study suggested that topical application of undiluted heterologous serum was well tolerated by dogs with SCCED and did not cause any identifiable deleterious effects. As an adjunct to SCCED treatment with debridement alone or with grid keratotomy, however, it did not offer a therapeutic advantage with respect to the reepithelialization rate. Additional research is needed to establish normative relative concentrations of epithelial and restorative constituents in canine serum, and optimized centrifugation techniques and storage methods will enhance our understanding of the therapeutic potential of serum in dogs with SCCED and other forms of ocular surface disease.

References

