What Is Your Diagnosis?

Figure 1—Lateral (A) and dorsoplantar (B) radiographic views of the left tarsus of a 6-year-old domestic shorthair cat evaluated for left pelvic limb lameness of 3 months’ duration.

History

A 6-year-old neutered male domestic shorthair cat was evaluated for left pelvic limb lameness of 3 months’ duration. The cat lived indoors but had access to the outside. Conservative management with meloxicam and a glucosamine-chondroitin sulfate product resulted in apparent resolution of the lameness. Two weeks prior to evaluation, the lameness recurred and a mass was detected on the medial aspect of the left tarsal region. The cat’s vaccination status was adequate, and results of tests for FeLV and FIV were negative.

A weight-bearing lameness of the left pelvic limb was detected during physical examination. Palpation of the left tarsal region elicited signs of pain and laxity was detected in the talocrural joint laterally when placed in flexion and stressed. A firm, painful swelling was detected on the medial and lateral aspects of the left tarsal region. Radiographs of the left tarsal region were obtained (Figure 1).

Determine whether additional imaging studies are required, or make your diagnosis from Figure 1—then turn the page.

This report was submitted by Ruth J. Lambert, DVM; Garrett Levin, DVM; Kirk Wendelburg, DVM, DACVS; Michael Huber, DVM, MS, DACVS; John Amann, DVM, PhD, DACVR; and Stephen Bilbrey, DVM, MS, DACVS, from the Animal Specialty Group Inc, 4641 Colorado Blvd, Los Angeles, CA 90039.

Address correspondence to Dr. Lambert.
Radiographic Findings and Interpretation

A soft tissue swelling around the talocrural joint and multiple small radiolucencies in the bones of the distal tarsal region are evident (Figure 2).

Comments

Physical examination findings and radiographic changes were compatible with chronic septic arthritis and soft tissue neoplasia with associated tarsal bone lysis. Results of cytologic examination of a fine-needle aspirate obtained from the area of the swelling on the medial aspect of the tarsus were compatible with mixed inflammation and fungal sepsis with Cryptococcus neoformans. No abnormalities were detected on CBC and serum biochemical analyses. Results of serologic testing for FeLV and FIV were negative. Results of serologic testing for C neoformans antigen were positive (titer, 1:4,096; a reaction at any dilution is considered a positive result).

Cryptococcosis, the most common mycotic infection in cats, is an opportunistic systemic mycosis seen more commonly in cats than dogs. Avian feces, particularly pigeon feces, are a reservoir for Cryptococcus organisms. Upper respiratory tract signs are detected in 50% to 80% of cats with cryptococcosis. Forty percent to 60% of infected cats may have cutaneous lesions, 20% to 25% may have neurologic deficits, and 20% may have ocular infections. It is believed that Cryptococcus organisms are inhaled and that local infection develops in the nares or upper or lower respiratory tract and spreads through the cribriform plate into the CNS or hematogenously to the skin, kidneys, bone, or CNS. A diagnosis of cryptococcosis is based on results of cytologic examination of affected tissues (eg, nasal discharge, fine-needle aspirate, or CSF), histologic examination of biopsy specimens, fungal culture, or serologic testing via latex agglutination. Fluconazole is the treatment of choice for cryptococcosis in cats. Resolution of clinical signs and decreasing antigen titers can be used to evaluate response to treatment.

The cat of this report was treated with fluconazole (25 mg, PO, q 12 h). Continuation of treatment with fluconazole was recommended until results of serologic testing were negative and radiographic signs of infection had resolved. After 6 months of treatment, the cat was no longer lame; however, palpation of the left tarsal region elicited signs of pain, and mild soft tissue swelling was detected. Radiography of the left tarsal region revealed that the lesions were resolving and the C neoformans antigen titer was 1:4.