Antinociceptive effects of long-acting nalbuphine decanoate after intramuscular administration to Hispaniolan Amazon parrots (Amazona ventralis)

David Sanchez-Migallon Guzman, LV, MS; Jana M. Braun, DVM, MPH; Paulo V. M. Steagall, DVM, PhD; Nicholas S. Keuler, MS; Timothy D. Heath, PhD; Lisa A. Krugner-Higby, DVM, PhD; Carolyn S. Brown, BS; Joanne R. Paul-Murphy, DVM

Objective—To evaluate the thermal antinociceptive effects and duration of action of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—10 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (33.7 mg/kg) or saline (0.9% NaCl) solution was administered IM in a randomized complete crossover experimental design (periods 1 and 2). Foot withdrawal threshold to a noxious thermal stimulus was used to evaluate responses. Baseline thermal withdrawal threshold was recorded 1 hour before drug or saline solution administration, and thermal foot withdrawal threshold measurements were repeated 1, 2, 3, 6, 12, 24, 48, and 72 hours after drug administration.

Results—Nalbuphine decanoate administered IM at a dose of 33.7 mg/kg significantly increased thermal foot withdrawal threshold, compared with results after administration of saline solution during period 2, and also caused a significant change in withdrawal threshold for up to 12 hours, compared with baseline values.

Conclusions and Clinical Relevance—Nalbuphine decanoate increased the foot withdrawal threshold to a noxious thermal stimulus in Hispaniolan Amazon parrots for up to 12 hours and provided a longer duration of action than has been reported for other nalbuphine formulations. Further studies with other types of nociceptive stimulation, dosages, and dosing intervals as well as clinical trials are needed to fully evaluate the analgesic effects of nalbuphine decanoate in psittacine birds. (Am J Vet Res 2013;74:196–200)

Opioid drugs are considered the most effective class of analgesic drugs for perioperative pain and are frequently used in veterinary medicine. Opioids, particularly those with κ-opioid receptor affinities,1–7 have been validated for clinical use in birds. Butorphanol tartrate and nalbuphine hydrochloride are κ-opioid receptor agonists and µ-opioid receptor antagonists and currently are considered the opioid drugs recommended for acute pain management in psittacine birds.1–7

The accepted dose range of 1 to 3 mg/kg for butorphanol and 12.5 mg/kg for nalbuphine hydrochloride results in a short period of action and requires repeated parenteral administration every 2 to 3 hours to maintain effects in psittacine birds.1–6,9,10

Long-acting opioid drugs would alleviate the need for frequent administration. Liposomal-encapsulated butorphanol provided analgesia for up to 5 days in psittacine birds.3,4 Long-acting nalbuphine formulations, such as nalbuphine decanoate, may provide an alternative for long-term pain management in psittacine birds. Use of the custom-synthesized long-acting ester nalbuphine decanoate resulted in analgesia in rats for up to 60 hours10,11 and rabbits for up to 48 hours.11 Additionally, nalbuphine is currently not on the Drug Enforcement Administration list of scheduled substances because of its low abuse potential, which is advantageous in clinical settings. Butorphanol is a schedule IV drug that requires a Drug Enforcement Administration license for prescription. Clinicians are more likely to dispense nonscheduled analgesic drugs than controlled drugs.

To our knowledge, there have been no studies conducted to investigate the analgesic efficacy of long-
acting nalbuphine esters in avian species. The purpose of the study reported here was to determine the antino-
ciceptive effects and duration of action of nalbuphine decanoate administered IM on thermal thresholds of
Hispaniolan Amazon parrots (Amazona ventralis). The hypothesis was that administration of nalbuphine dec-
anoate to Hispaniolan Amazon parrots would result in significant antinoceptive effects to a noxious thermal
stimulus for up to 48 hours.

Materials and Methods

Animals—Ten adult (range, 5 to 21 years old; me-
dian, 7.8 years old) Hispaniolan Amazon parrots of un-
known sex were used in the study. Mean ± SD body
weight of the parrots was 285.3 ± 18.5 g. All parrots
were considered healthy prior to and during the study
as determined on the basis of results of physical exam-
inations. Parrots were maintained in flocks of 4 to 6
parrots in large rooms (11.2 m²) between experimental
periods. During the study, the parrots were housed in stan-
dard stainless steel laboratory cages (0.6 × 0.6 × 0.6 m)
with a perch and hanging toy. Parrots were maintained
on a light cycle of 12 hours of light and 12 hours of
darkness, fed a commercial pelleted diet formulated
for psittacine birds, and provided water ad libitum. The
Institutional Animal Care and Use Committee at the
University of Wisconsin School of Veterinary Medicine
approved the experimental protocol. Because this study
involved a species for which other common analgesics
have not been adequately evaluated (eg, antinoce-
tive effect, duration of action, and interindividual vari-
bility), the use of a positive control group in place of a
negative control group13 was not considered feasible for
the evaluation of the antinoceptive effects and dura-
tion of action of nalbuphine.

Experimental design—A within-subjects, com-
plete crossover experimental design was used. Each
bird received both nalbuphine decanoate and saline
(0.9% NaCl) solution. Parrots were randomly assigned
(as determined by drawing numbered pieces of paper
from a bag) to 2 groups. During period 1, birds in group
1 received nalbuphine decanoate (33.7 mg/kg, IM), and
birds in group 2 received an equivalent volume of sa-
line solution IM. Treatments were administered in the
pectoral muscles, and the observer was not aware of the
administration to each bird. After a 21-day wash-
out period, birds received the alternate treatment during
period 2.

Synthesis of nalbuphine decanoate—Nalbuphine
decanoate was synthesized by modification of a method
described elsewhere14; details on the synthesis are pro-
vided in a study15 on the pharmacokinetics of long-act-
ing nalbuphine decanoate in Hispaniolan Amazon par-
rots. Nalbuphine hydrochloride6 (0.5315 g) was used
as the base. A decanoate group was added by the use
of decanoyl chloride.c The nalbuphine decanoate prod-
uct was separated via thin-layer chromatography on a
silica gel with a solution of ethyl acetate and hexane
(3:1) as the solvent. The crude product was collected
in a round-bottom flask, evaporated, lyophilized, and
weighed. The product was purified on a column, and
fractions were collected, evaporated, and lyophilized.
The nalbuphine decanoate was dissolved in 100% etha-
nol and analyzed for purity via mass spectroscopy. Prior
to injection, nalbuphine decanoate was flash evaporat-
ed and then dissolved at the desired concentration in
sterile sesame oil.

Nociception testing procedures—Measurements
of thermal foot withdrawal threshold were collected
on all parrots by use of a test box equipped with a
testing perch. The test perch was designed to deliv-
er a thermal stimulus to the left plantar surface of
a parrot's foot16 via thermal microchips that rapidly
changed the temperature of the perch. Parrots could
escape the brief noxious thermal stimulus by lifting
the foot, and the foot could then be placed back on
the perch within 2 or 3 seconds after the withdrawal
response because the perch temperature decreased
quickly. The test box had dark sides that inhibited
the parrot from viewing its surroundings, includ-
ing the investigators, and a clear front that allowed
the investigator to monitor behavioral responses by
use of a remote video camera. Prior to each experi-
ment, each parrot was acclimated to the test chamber
by mimicking a full test day. The thermal stimulus,
which was generated by thermoelectric modules, ranged from 29° to 70°C; a rapid increase and
subsequent decrease in perch temperature (rate of
temperature increase and decrease, 0.3°C/s). The
cutoff temperature was 70°C to avoid damage to soft
tissues.

A thermal threshold was defined as the perch tem-
perature that was concurrent with the foot withdraw-
al response. A separate baseline thermal withdrawal
threshold was recorded for each experimental period
via a single measurement obtained 1 hour before ad-
ministration of the analgesic drug or saline solution.
Measurements of thermal foot withdrawal threshold
were performed via a single measurement 1, 2, 3, 6, 12,
24, 48, and 72 hours after IM administration of nal-
buphine decanoate or saline solution. The birds were
removed from the testing box between testing times.
All thermal thresholds were determined by the same in-
vestigator (JMB), who was not aware of the treatment
administered to each bird. All birds were monitored
during the study for signs of adverse effects, including
sedation, excitation, vomiting, and diarrhea.

Statistical analysis—All data were analyzed with
statistical software.f The endpoint of interest was the
difference between withdrawal temperature at any giv-
en time point after drug administration and the baseline
withdrawal temperature for that bird in that period. A
repeated-measures ANOVA was used, with fixed effects
dose, time, period, and all associated interactions.
Correlations within birds over time within a period
were modeled with a spatial power structure. Residu-
als resulting from the fitted model were verified to be
acceptably normally distributed and had no evidence
of heteroscedasticity. The least square means of changes
in withdrawal temperature were obtained from the values
generated with the fitted model. Pairwise comparisons
of the least square means for the groups, both within
each time point and over all times, were performed via

AJVR, Vol 74, No. 2, February 2013 197

Unauthenticated | Downloaded 06/08/22 11:45 PM UTC
the Tukey honestly significant difference method to account for multiple comparisons. For all analyses, significance was set at values of $P < 0.05$.

Results

Baseline thermal withdrawal threshold values ($n = 20$) for the thermal stimulus varied from 39.00°C to 60.85°C. Four birds received nalbuphine decanoate in period 1 followed by saline solution in period 2, and 6 birds received the treatments in the opposite order. There were significant overall effects of treatment ($P = 0.004$), period ($P = 0.040$), and the treatment-by-period interaction ($P = 0.045$). Because of the treatment-by-period interaction, treatment effect was evaluated separately for each period (Figure 1).

In periods 1 and 2, there were no significant changes in thermal withdrawal threshold from baseline values for birds receiving saline solution at any times, except for period 1 at 72 hours (1.81°C [$P = 0.040$]; Figure 2). In period 1, birds receiving nalbuphine decanoate had a mean change in thermal threshold of 1.62°C throughout the entire testing period of 72 hours. This value was not significantly different ($P = 0.846$) from the value for birds receiving saline solution, which had a mean change in thermal threshold of 1.13°C. However, administration of nalbuphine decanoate resulted in a significant change from the baseline values in period 1 at 2 (2.57°C [$P = 0.018$]), 3 (2.64°C [$P = 0.015$]), 6 (2.26°C [$P = 0.036$]), and 12 (3.06°C [$P = 0.005$]) hours after drug administration. There was no significant (P values ranged from 0.055 to 0.833) change from baseline values at 1, 24, 48, or 72 hours after administration. None of the parrots had abnormal behavior during the experiments. There were no adverse effects, including sedation, detected during the study.

None of the parrots had abnormal behavior during the experiments. There were no adverse effects, including sedation, detected during the study.

Discussion

Nalbuphine decanoate administered at 33.7 mg/kg, IM, significantly increased thermal foot withdrawal threshold during both periods at 2, 3, and 6 hours after administration, compared with baseline values, and also

![Figure 1](image1.png) ![Figure 2](image2.png)
significantly changed the withdrawal threshold during period 1 for up to 12 hours, compared with baseline values. In both periods, there was not a significant increase in the thermal foot withdrawal threshold at 1 hour, compared with the baseline value, likely because of the slow absorption rate for nalbuphine decanoate.15

Results of the present study are consistent with data from mammalian species in which nalbuphine decanoate provided longer-acting antinociception than that provided by the standard nalbuphine hydrochloride.10–12 The nalbuphine decanoate dose used in the present study was calculated on the basis of plasma concentrations of nalbuphine that were associated with antinociception and the pharmacokinetics of nalbuphine decanoate in Hispaniolan Amazon parrots receiving a slightly higher dose of the drug (37.5 mg/kg). This response to the thermal stimulus was found to be a reliable measurement. However, the response to the thermal stimulus in a study16 conducted to evaluate the antinociceptive effect for up to 3 hours, whereas in another study,17 butorphanol provided antinociception for up to 90 minutes, which was the last time point evaluated. On the basis of results of the present study, nalbuphine decanoate provides analgesia in Hispaniolan Amazon parrots for up to 12 hours. This is longer than the reported duration for standard formulations of nalbuphine and butorphanol, but much shorter than the duration for liposome-encapsulated butorphanol formulations (which can provide analgesic effects for up to 5 days).2–4

Individual variation in the antinociceptive effects of opioids has been observed in many species, and the variation appears to be multifactorial, with sex,12–13 genotype,14 type of noxious stimulus,15 receptor,16 and relative efficacy of the drug all affecting the individual response.20 In a previous study17 that involved the use of nalbuphine hydrochloride, baseline values for thermal withdrawal threshold for the thermal stimulus (n = 56) ranged from 43°C to 59.8°C, which are values similar to those obtained in the study reported here. The variation in individual responses to the treatments in the present study resulted in a large SD when individual results were grouped by treatment. Although all nalbuphine decanoate treatments caused an increase in thermal threshold, compared with baseline results, the variation in individual responses precluded the ability to detect significant differences in the mean change in period 1 between birds receiving the control and nalbuphine decanoate treatments, but there was a significant difference in period 2.

The data for the present study were analyzed 2 ways. Changes in values between the nalbuphine and control treatments were compared, as were changes for each treatment from the mean baseline values for that treatment. Both analyses were considered in the interpretation of the results. Despite a significant effect of period, analysis of the data suggested a possible duration of the antinociceptive effect for up to 12 hours. The significant mean change in temperature in the study was considered clinically relevant by the authors and likely was associated with mild analgesia. Because of limited availability of birds for the study, the sample size (n = 10) was the lowest for all the studies performed by our laboratory group during evaluation of analgesics in Hispaniolan Amazon parrots, and it likely was associated with the difference in results between periods. Results of a retrospective power analysis revealed that approximately 119 birds would have been needed to detect (with 80% power) the difference of 0.49°C observed between the nalbuphine decanoate and control treatment during period 1, whereas 7 birds would have been needed to detect the difference of 2.34°C observed between the groups during period 2.

Therapeutic plasma concentration differs among species, subjects within a species, and methods used for stimulating pain, so caution should be used when plasma concentration alone is used to predict analgesia.27 The antinociceptive effects are likely determined by the concentration at the receptor, which lags behind the plasma concentration.27 The antinociceptive effect of nalbuphine hydrochloride administered at 12.5 mg/kg lasted for 3 hours, compared with baseline values, at a mean plasma concentration of 27.76 ng/mL.14 Mean plasma concentrations in Hispaniolan Amazon parrots at 6, 9, 12, and 24 hours after IM administration of nalbuphine decanoate at 37.5 mg/kg were 108.7, 46.4, 76.1, and 42.3 ng/mL, respectively.15 The lower dose used in the present study to evaluate antinociceptive effects may also account for the shorter duration of action than was predicted in that previous study.15

Adverse effects, including sedation, were not observed in the parrots. These findings are consistent with results of a study17 conducted to evaluate the anti-
nociceptive effects of nalbuphine hydrochloride in Hispanic Amazon parrots and differ from findings in another study conducted to evaluate liposome-encapsulated butorphanol in the same species. Nalbuphine has a low incidence of undesirable effects in mammals, with sedation being the most common, although sedation can be advantageous in clinical settings. There is plateau respiratory depression with both butorphanol and nalbuphine in mammals. Results of the present study and those in previous reports support the contention that both drugs are safe and effective agonist-antagonist analgesics, but further studies to evaluate cardiovascular and analgesic effects of nalbuphine in parrots are needed.

In the study reported here, nalbuphine decanoate administered IM at 33.7 mg/kg significantly increased the foot withdrawal threshold to a thermal noxious stimulus in Hispanic Amazon parrots for up to 12 hours. Further studies with other types of noxious stimulation, doses, and testing intervals are needed to fully evaluate the analgesic effects of nalbuphine decanoate in psittacine birds and their relevance in clinical settings.

References