Eimeria macusaniensis is a large coccidian parasite of the phylum Apicomplexa that causes fatal enteritis in camelids throughout the world. Camelids may be affected at any age, and they often have nonspecific clinical signs, such as weight loss, lethargy, and decreased appetite. However, some clinically affected animals have gastrointestinal signs that range from mild nonhemorrhagic diarrhea to severe enteritis associated with substantial protein loss, and it may even result in death. Currently, there are no drugs approved for the treatment of camelids infected with E macusaniensis, and the authors are not aware of any controlled studies performed to evaluate the efficacy of available anticoccidial products. However, some of the anticoccidial drugs that have been used include sulfonamides, amprolium, decoquinate, and ponazuril. Response of clinically affected camelids to these compounds appears to be controversial. Although some clinicians maintain that standard anticoccidial drugs, such as amprolium and decoquinate, are ineffective or marginally effective against E macusaniensis, their administration may have been associated with substantial clinical improvement in 1 report. Thus, current treatment practices are empirical and primarily extrapolated from protocols used to treat coccidia infections in other species.

Of concern is the potential for interspecies differences in drug metabolism. Phylogenetic divergence, such as digestive functions (ruminant vs nonruminant or carnivore vs herbivore), between species affects drug absorption. For example, in 1 study, investigators detected major differences in the metabolism of ivermectin between cattle and camels. Camelids are considered
pseudoruminants because of the remarkable anatomic and histologic differences of their stomachs, compared with those of true ruminants. Thus, extrapolation of treatment protocols from other species, even ruminants, may provide an inappropriate treatment regimen for cameldids (ie, dosage is too low; frequency of administration is insufficient, or dosage is too high and leads to toxicosis).

Ponazuril is a metabolite of toltrazuril and is approved by the FDA for the treatment of infections attributable to Sarcocystis neurona in horses. In addition, ponazuril is an effective antiparasitic drug in several host species (sheep, goats, chickens, mice, cattle, dogs, pigs, and rabbits) and against other Apicomplexans (Toxoplasma gondii, Neospora caninum, and Sarcocystis neurona). In contrast to results for other antiparasitic drugs, ponazuril has coccidiocidal action against all intracellular forms or developmental stages and does not interfere with the development of natural immunity. Ponazuril currently is used to treat E. macusaniensis infections in cameldids despite a lack of information regarding its efficacy. Therefore, the purpose of the study reported here was to describe the pharmacokinetics of ponazuril in healthy llamas following oral administration of a single dose.

Materials and Methods

Animals—Six healthy adult (4 client-owned and 2 university-owned) llamas (Lama glama) were used in the study. The llamas (4 males and 2 females) ranged from 3 to 13 years of age (mean ± SD, 6.3 ± 4.0 years). Body weight of the llamas ranged from 153 to 173 kg (mean, 158 ± 16 kg). Llamas were housed as a group in a pasture. Llamas had ad libitum access to hay and water and were fed a pelleted ration. The University of Tennessee Institutional Animal Care and Use Committee approved the experimental protocol.

Preparation for the experiment—Two days before the beginning of the study, the llamas were placed in indoor stalls in pairs in a well-ventilated, climate-controlled barn. Attitude and appetite of llamas were assessed twice daily, and rectal temperature, heart rate, respiratory rate, and motility of the first compartment were assessed daily, and rectal temperature, heart rate, respiratory rate, and motility of the first compartment were assessed daily. The day before the onset of the experiment, a 14-gauge, 20-cm, long-term, over-the-wire catheter was placed in the jugular vein of each llama for use in collection of blood samples. Food was removed 10 hours before onset of the experiment.

Experimental design—All llamas received a single dose of ponazuril (20 mg/kg, PO). The drug was administered via a syringe, and care was exercised to ensure that animals ingested the entire dose. Blood samples were collected from the jugular catheter or via venipuncture into sterile red-top tubes without additives immediately before (time 0) and 0.5, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 21, 28, 35, 42, and 49 days after administration. Blood samples were allowed to clot and then were centrifuged (3,220 g for 10 minutes); serum was harvested and stored at –80°C until analyzed.

Drug analysis—Serum samples were analyzed by use of a validated reverse-phase high-performance liquid chromatography assay with UV-absorbance detection to determine ponazuril serum concentrations in each llama. Briefly, serum samples (50 µL) were fortified with 100 µL of an internal standard (toltrazuril; 250 µg/mL). Acetonitrile (450 µL) was added to precipitate serum proteins. Samples were then centrifuged at 8,300 × g for 5 minutes. Following centrifugation, the supernatant was transferred to another vial and diluted with 800 µL of acetonitrile-0.1% formic acid (dilution of 1:3 [vol/vol]). Diluted samples were then analyzed by use of reverse-phase high-performance liquid chromatography.

Chromatographic separation of the compounds was performed on a 5-µm 4.6 × 150-mm column with an isocratic flow of 0.5 mL/min. The mobile phase consisted of a mixture of acetonitrile (54%) and 0.1% formic acid solution (46%). Ponazuril and the internal standard toltrazuril were detected at a UV absorbance of 254 nm.

Standard curves for analysis were prepared by fortifying untreated llama serum with ponazuril to yield a linear portion of the curve (R² = 0.993) for concentrations that ranged from 0.3 to 100 µg/mL. Accuracy and precision of the assay were assessed by repeated measures of quality-control samples at concentrations throughout the calibration curve. Accuracy was determined as ± 6.9% and ± 9.0% for intraday and interday measurements, respectively. Precision as a measure of reproducibility of the assay was 7.2% and 7.3% for intraday and interday measurements, respectively.

Pharmacokinetic analysis—The pharmacokinetic parameters t½, Tmax, Cmax, and MRT were calculated for ponazuril. Pharmacokinetic parameters were determined via noncompartmental analysis of the obtained serum concentration-time curves by use of a software program.

Results

Analysis of serum samples revealed substantial absorption of ponazuril after oral administration of a single dose of ponazuril to healthy llamas. Samples obtained be:

<table>
<thead>
<tr>
<th>Time (d)*</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NA</td>
<td>BLQ</td>
</tr>
<tr>
<td>0.5</td>
<td>7.23 ± 1.03</td>
<td>1.50–19.49</td>
</tr>
<tr>
<td>1</td>
<td>16.20 ± 1.00</td>
<td>12.97–19.76</td>
</tr>
<tr>
<td>2</td>
<td>19.79 ± 2.18</td>
<td>12.58–27.25</td>
</tr>
<tr>
<td>3</td>
<td>20.84 ± 1.88</td>
<td>16.10–28.08</td>
</tr>
<tr>
<td>4</td>
<td>21.76 ± 2.80</td>
<td>13.96–30.60</td>
</tr>
<tr>
<td>5</td>
<td>20.12 ± 2.32</td>
<td>14.30–27.43</td>
</tr>
<tr>
<td>6</td>
<td>19.68 ± 2.45</td>
<td>13.18–29.05</td>
</tr>
<tr>
<td>7</td>
<td>16.21 ± 2.46</td>
<td>7.25–22.84</td>
</tr>
<tr>
<td>9</td>
<td>15.39 ± 2.13</td>
<td>8.41–22.89</td>
</tr>
<tr>
<td>11</td>
<td>13.84 ± 2.21</td>
<td>7.13–19.81</td>
</tr>
<tr>
<td>13</td>
<td>10.62 ± 2.65</td>
<td>4.68–18.30</td>
</tr>
<tr>
<td>21</td>
<td>4.34 ± 1.01</td>
<td>1.88–8.26</td>
</tr>
<tr>
<td>28</td>
<td>1.85 ± 0.51</td>
<td>0.64–3.43</td>
</tr>
<tr>
<td>35</td>
<td>0.75 ± 0.16</td>
<td>0.33–1.23</td>
</tr>
<tr>
<td>42</td>
<td>NA</td>
<td>BLQ</td>
</tr>
<tr>
<td>49</td>
<td>NA</td>
<td>BLQ</td>
</tr>
</tbody>
</table>

Values reported are µg/L.

*Time of ponazuril administration was designated as day 0.BLQ = Below limit of quantification. NA = Not applicable.
Ponazuril was absorbed following a single dose (20 mg/kg, PO) and was detected in the serum of all 6 llamas, with drug concentrations detected at 12 hours after administration. Mean ± SD Cmax in llamas (23.6 ± 6.0 mg/L) was higher than that observed in cattle, receiving ponazuril at a dosage of 5 mg/kg and horses, receiving ponazuril at a dosage of 10 mg/kg, but this appears to be a dose-dependent effect. The dose-adjusted Cmax is extremely similar in all 3 species, with values of 1.18, 0.91, and 1.12 mg/L for a 1 mg/kg dose in llamas, cattle, and horses, respectively. The mean Cmax varied among the 6 llamas tested, with the peak concentration ranging from 16.6 to 30.6 mg/L. Similarly, the serum ponazuril t1/2 in each llama varied from 115.5 to 160 hours (mean, 135.5 hours). The mean plasma t1/2 of ponazuril has been reported as 58 hours for cattle and 61.4 hours for horses. Analysis of our data suggests that ponazuril is eliminated much slower (almost a 2-fold difference) in llamas than in cattle and horses. Alternatively, the intersubject and interspecies variability observed in the t1/2 of ponazuril may be influenced by the rate of oral absorption, which can be affected by potential binding of ponazuril to food particles within the gastrointestinal tract. Thus, the increased t1/2 in llamas may in fact be a result of flip-flop pharmacokinetics and therefore a reflection of the ponazuril absorption rate rather than its elimination rate constant. Although ponazuril was detected in the serum at the first sample obtained 12 hours after drug administration, the absorption rate appeared slow and variable, with Tmax ranging from 48 to 120 hours (mean ± SD, 84 ± 25 hours).

We were unable to determine the oral bioavailability of ponazuril in llamas because we did not have access to a formulation that would allow for IV administration. Similarly, we ignored whether there was a difference in t1/2 between IV and oral administration. However, on the basis of data our research group has obtained during our experiments, we believe that ponazuril is absorbed after oral administration to llamas and that it has a relatively long serum half-life (135.5 hours).

To our knowledge, the in vitro susceptibility of *E. macusaniensis* to ponazuril and other anticoccidial drugs has not been investigated in camelids. However, studies have revealed that ponazuril administered at a dosage of 5 µg/mL inhibits the development of several tissue cyst–forming coccidia (T. gondii, N. caninum, and S. neurona) in tissue cultures. Investigators in another study found that toltrazuril concentrations of 1 µg/mL caused 50% inhibition of parasite growth in *Eimeria tenella*.

For the study reported here, we concluded that ponazuril is tolerated well by llamas and that the rate and extent of absorption following oral administration are sufficient to result in potentially effective serum concentrations. In addition, ponazuril has a long t1/2 that results in sustained exposure after oral administration of a single dose. The serum concentration of ponazuril after a single orally administered dose (20 mg/kg) in llamas reaches therapeutic concentrations for the control of coccidiosis for at least 21 days. Further studies are needed to evaluate the in vitro effects and clinical efficacy of ponazuril against *E. macusaniensis*.
the bioavailability of ponazuril, and the establishment of an appropriate administration regimen in camels.

References