Computed tomographic analysis of the effects of two inspired oxygen concentrations on pulmonary aeration in anesthetized and mechanically ventilated dogs

Francesco Staffieri, DMV, PhD; Delia Franchini, DMV, PhD; Giuseppina L. Carella, DMV; Manuela G. Montanaro, DMV; Valerio Valentini, DMV; Bernd Driessen, DVM, PhD; Salvatore Grasso, MD; Antonio Crovace, DMV

Objective—To compare the effect of 2 concentrations of oxygen in inspired gas (fraction of inspired oxygen [Fio₂] 1.0 or 0.4) on pulmonary aeration and gas exchange in dogs during inhalation anesthesia.

Animals—20 healthy dogs.

Procedures—Following administration of acepromazine and morphine, anesthesia was induced in each dog with thiopental and maintained with isoflurane in 100% oxygen (100% group; n = 10) or a mixture of 40% oxygen and air (40% group; 10). Dogs were placed in dorsal recumbency and were mechanically ventilated. After surgery, spiral computed tomography (CT) of the thorax was performed and PaO₂, PacO₂, and the alveolar-arterial oxygen tension difference (P[Al–a]O₂) were assessed. The lung CT images were analyzed, and the extent of hyperinflated (–1,000 to –901 Hounsfield units [HUs]), normally aerated (–900 to –501 HUs), poorly aerated (–500 to –101 HUs), or nonaerated (–100 to +100 HUs) areas was determined.

Results—Compared with the 100% oxygen group, the normally aerated lung area was significantly greater and the poorly aerated and nonaerated areas were significantly smaller in the 40% oxygen group. Although PacO₂ was similar in both groups, PaO₂ and P[Al–a]O₂ were significantly higher in the 100% oxygen group. In both groups, pulmonary atelectasis developed preferentially in caudal lung fields.

Conclusion and Clinical Relevance—In isoflurane-anesthetized dogs, mechanical ventilation with 40% oxygen appeared to maintain significantly better lung aeration and gas exchange than ventilation with 100% oxygen. (Am J Vet Res 2007;68:925–931)

Abbreviations

- Fio₂: Fraction of inspired oxygen
- CT: Computed tomography
- HU: Hounsfield unit
- PEEP: Positive end-expiratory pressure
- Ppa: Peak airway pressure
- ETCO₂: End-tidal partial pressure of CO₂
- ROI: Region of interest
- P[Al–a]O₂: Alveolar-arterial oxygen tension difference
- FRC: Functional residual capacity
- Vₐ/Q: Ventilation-to-perfusion

In humans, administration of a high inspired oxygen fraction of 80% to 100% (ie, Fio₂ 0.8 to 1.0) during anesthesia is associated with development of more extensive atelectasis in the dependent lung areas, compared with that which develops during administration of a lower Fio₂ (0.3 to 0.4). Results of several clinical and experimental studies have confirmed this factor as a determinant for atelectasis formation in each phase of anesthesia: induction (preoxygenation), maintenance, and prior to extubation. Thus, use of low Fio₂ (0.3 to 0.4) for the maintenance of anesthesia is considered an appropriate technique to reduce atelectasis.
formation in humans who do not have preexisting lung disease.3

Computed tomography represents the gold standard method for the study of lung aeration and particularly for detection of atelectasis. On the basis of differences in radiographic densities recorded in each individual CT image (expressed in HUs), it is possible to distinguish between hyperinflated (–1,000 to –901 HUs), normally aerated (–900 to –501 HUs), poorly aerated (–500 to –101 HUs), and nonaerated (–100 to 100 HUs) areas of lungs.8,9

The use of high FiO2 is currently standard practice in veterinary anesthesia, but results of systematic analyses that support this practice are lacking to our knowledge. In fact, we are not aware of any studies to investigate how differences in FiO2 affect lung aeration and, consequently, pulmonary gas exchange in dogs during inhalation anesthesia. The purpose of the study reported here was to compare the effect of 2 FiO2 conditions (1.0 and 0.4) on pulmonary aeration and gas exchange in isoflurane-anesthetized dogs positioned in dorsal recumbency for abdominal surgery. We hypothesized that administration of high FiO2 will lead to a greater impairment of lung aeration and gas exchange than administration of lower FiO2 in dogs.

Materials and Methods

The study was conducted in compliance with the Italian Animal Welfare Act and statutes of the University of Bari relating to the use of client-owned animals in clinical investigations.

Animals—Twenty adult healthy client-owned female mixed-breed dogs scheduled for elective ovariohysterectomy were enrolled in the study after written owner consent had been obtained. An equal number of dogs was randomly assigned to each of 2 groups (designated as the 40% and 100% groups on the basis of the administered FiO2). Preoperative screening included a CBC, serum biochemical analyses, and thoracic radiography (right lateral view). Dogs with abnormal clini-
copathologic findings or physical examination evidence of pulmonary disease were excluded from the study.

Anesthetic procedure and monitoring—Each dog was premedicated with acepromazine (30 µg/kg) and morphine sulphate (0.3 mg/kg) administered IM. Once an adequate level of sedation was achieved, a cephalic vein was catheterized (20-gauge catheter) by use of aseptic techniques, and lactated Ringer’s solution was administered (5 mL/kg/h). Thoracic radiography was performed with the dog in right lateral recumbency to exclude major lung disease. Approximately 30 minutes after premedication, anesthesia was induced via IV administration of 10 mg of thiopental/kg. The dog was restrained in sternal recumbency and endotracheal intubation was performed; the endotracheal tube was connected to a rebreathing circuit with soda lime as an absorber. Subsequently, the dog received isoflurane in 100% oxygen (100% group; n = 10) or a gas mixture of 40% oxygen and air (40% group; 10). Five minutes after connection to the breathing circuit, the dog was positioned in dorsal recumbency and was mechanically ventilated by use of a respirator operated in a volume-controlled mode with tidal volumes of 15 mL/kg, an inspiratory-to-expiratory ratio of 1:2, an inspiratory hold of 25% of the inspiration time, zero PEEP, and a Ppeak limit of 20 cm H2O. Respiratory rate was adjusted to maintain an ETCO2 of 35 to 45 mm Hg. A continuous lead II ECG; heart rate; systolic, diastolic, and mean arterial pressures (determined at the left dorsal metatarsal artery by use of a noninvasive oscillometric technique); oxygen saturation as measured by pulse oximetry; FiO2; end-tidal isoflurane concentration; ETCO2; Ppeak; plateau airway pressure; tidal volume; and minute ventilation were continuously monitored throughout anesthesia. The multigas analyzer unit was calibrated prior to each experiment by use of gas standards. At the end of the surgical procedure, CT of the thorax was performed and an arterial blood sample was withdrawn from the right femoral artery. The dog was kept in dorsal recumbency throughout the procedure until the end of the CT procedure. The interval between placement into dorsal recumbency and commencement of the CT procedure (ie, the time to scan) was recorded.

CT and analysis of lung densities—Lung aeration and distribution of atelectasis were analyzed by means of a spiral CT scanner.5 At the end of surgery, each dog was maintained in dorsal recumbency and transported to the nearby CT scanner, whereupon the endotracheal tube was reconnected to the anesthesia machine and mechanical ventilation with the same FiO2 administered during surgery (0.4 or 1.0) was recommenced. The dog was positioned in the scanner in dorsal recumbency, and a dorsal plane scout image that extended over the thorax was obtained. Spiral CT of both lungs was then performed during end-expiration apnea. All images were obtained at a setting of 120 kVp and 160 mA by use of a lung algorithm; matrix size was 512 X 512, field of view was 35, and pitch was 1.5. Images of 10-mm slice thickness were reconstructed.

All CT images were analyzed for lung abnormalities; if pathologic changes were detected, the dog was excluded from the study. An operator (VV) who was unaware of the FiO2 administered analyzed the CT images by means of a computer program.6 Both right and left lungs were chosen as ROIs for analysis by manually drawing the outer boundary along the inner aspect of the ribs and the inner boundary along the mediastinal organs.7 The ROIs were drawn by use of a bone window for the outer boundary along the inner aspect of the ribs (window width, 2,000; window level, 200) and a lung window for the inner boundary along the mediastinal organs (window width, 1,600; window level, –600; Figure 1). The total area (mm2) of right and left lungs was calculated by including pixels with density values of –1,000 to +100 HUs.8 The computer software plotted the distribution of radiographic attenuations (HUs) among the selected ROIs. In accordance with previous human studies,8,9 we identified the following regions or compartments within the lungs: hyperinflated (ie, composed of pixels with CT numbers of –1,000 to –901 HUs), normally aerated (ie, composed of pixels with CT numbers of –900 to –501 HUs), poorly aerated (ie, composed of pixels with CT numbers of –500 to –101 HUs), and nonaerated (ie, composed
of pixels with CT numbers of –100 to +100 HU and indicating complete atelectasis). The area (mm²) of each compartment in each CT image was calculated. For each dog, the data acquired in each CT image were then added together to yield the total area that each compartment occupied within both lungs. Numeric surface area values of each compartment were expressed as a percentage of total lung surface area. In addition, all slices performed in each dog were subdivided equally into apical (cranial), median, and caudal fields, and the percentage of total atelectasis in each field of both the right and left lungs was calculated in both study groups (100% and 40% groups). Moreover, in each group, the percentage of total atelectasis in each field (apical, median, and caudal) of the right and left lung was separately calculated.

Evaluation of gas exchange—During CT imaging, temperature-corrected PaO₂ and P_{aco2} were determined. The P_{A-a}O₂ was calculated in each dog by use of a formula as follows:

\[P_{A-a}O₂ = (PB-PH₂O) \times FIO₂ - \frac{FIO₂/R - Paco₂}{} \]

where PB is the barometric pressure at sea level (760 mm Hg; Bari is located at sea level); PH₂O is the water vapor pressure at 37°C (47 mm Hg); and R is the respiratory exchange ratio, which is assumed to be 0.9 in dogs.

Statistical analysis—Data were reported as mean ± SD. Demographic data, hemodynamic and respiratory variables measured during anesthesia, total lung surface area analyzed, pulmonary aeration compartments, P_{aco2}, and P_{A-a}O₂ for the 2 study groups were compared. In addition, the relative distributions (%) of atelectasis in the apical (cranial), median, and caudal lung fields were compared between the 2 study groups, between lung fields in each group, and between the right and left lung in each group. Statistical analysis included a 1-way ANOVA, and a value of P < 0.05 was considered significant.

Results

There were no significant differences between the 40% and 100% groups with respect to age (3.2 ± 1.2 years and 3.1 ± 1.4 years, respectively); weight (20.6 ± 7 kg and 20.3 ± 7.3 kg, respectively); time to scan (62.9 ± 8.2 minutes and 62.2 ± 8.1 minutes, respectively); or mean heart rate (103 ± 10 minutes⁻¹ and 104 ± 12 minutes⁻¹, respectively), mean arterial pressure (73.0 ± 6.4 mm Hg and 72.5 ± 6.9 mm Hg, respectively), respiratory rate (9 ± 1 minutes⁻¹ and 9 ± 1 minutes⁻¹, respectively), P_{aw} (14.3 ± 2.7 cm H₂O and 14.9 ± 2.0 cm H₂O, respectively), plateau airway pressure (13.8 ± 2.6 cm H₂O and 13.6 ± 2.6 cm H₂O, respectively), ET CO₂ (37.6 ± 2.7 mm Hg and 36.8 ± 2.2 mm Hg, respectively), oxygen saturation as measured by pulse oximetry (99.1 ± 1.1% and 99.3 ± 0.7%, respectively), and end-tidal isoflurane concentration (1.5 ± 0.1% and 1.4 ± 0.3%, respectively) measured during anesthesia.

In all dogs, the CT procedure was completed during end-expiration apnea, thereby taking advantage of the apnea in the immediate period following the sudden discontinuation of mechanical ventilation. The CT procedure required < 1 minute for completion in all dogs, and immediately after the end of the procedure, mechanical ventilation was resumed. Lung aeration and gas exchange data were collected (Table 1); the mean lung area (mm²) distribution of radiographic attenuations (HUs) within the selected ROIs in both groups was assessed (Figure 2). The total analyzed lung surface area was similar in both groups. In dogs ventilated at an FIO₂ of 0.4, the percentage of normally aerated lung area

![Figure 1—Representative transverse CT images of the thorax of a dog breathing 40% oxygen (A) and thorax of a dog breathing 100% oxygen (B) during isoflurane anesthesia. The boundaries of the ROIs are drawn manually (orange line) on each image. Atelectatic (nonaerated) areas (arrows) in the dependent lung fields are present in the dog breathing 100% oxygen. The numbers indicate the surface area of the ROIs.](image)

<table>
<thead>
<tr>
<th>Variable</th>
<th>40% group (n = 10)</th>
<th>100% group (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lung surface area* (cm²)</td>
<td>8,966 ± 4,756</td>
<td>10,517 ± 1,801</td>
</tr>
<tr>
<td>Aeration status (%)†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperinflated</td>
<td>2.5 ± 2.8</td>
<td>12 ± 0.8</td>
</tr>
<tr>
<td>Normally aerated</td>
<td>77.1 ± 5.0</td>
<td>58.9 ± 8.1</td>
</tr>
<tr>
<td>Poorly aerated</td>
<td>17.5 ± 6.4</td>
<td>26.7 ± 5.3</td>
</tr>
<tr>
<td>Nonaerated</td>
<td>2.5 ± 0.9</td>
<td>12.8 ± 3.7</td>
</tr>
<tr>
<td>P_{aw} (mm Hg)</td>
<td>35.6 ± 11.7</td>
<td>176.7 ± 40.2</td>
</tr>
<tr>
<td>P_{aw} (mm Hg)</td>
<td>211.4 ± 11.9</td>
<td>499.4 ± 49.01</td>
</tr>
<tr>
<td>Paco₂ (mm Hg)</td>
<td>38 ± 4</td>
<td>37 ± 3</td>
</tr>
</tbody>
</table>

*Total lung surface area derived via computer-assisted analysis of radiographic attenuation (HUs) in CT images. †Percentage of total lung surface area that was classified as hyperinflated (~100 to –901 HUs), normally aerated (~900 to –201 HUs), poorly aerated (~899 to –101 HUs), and nonaerated (~100 to <100 HUs). ‡Value significantly (P < 0.05) different from 40% group value.
was significantly greater and the percentages of poorly aerated and nonaerated compartments were significantly smaller than those values in dogs ventilated at an F\textsubscript{o\textsubscript{2}} of 1.0. Mean Pa\textsubscript{co\textsubscript{2}} was similar in both groups, whereas Pa\textsubscript{o\textsubscript{2}} and P\textsubscript{A-a}o\textsubscript{2} were significantly higher in the 100% group, compared with findings in the 40% group. The percentage of atelectasis in the apical (cranial) lung field was similar in both groups but significantly lower than the percentage of atelectasis in the median and caudal lung fields (Table 2). In the 40% group, atelectasis was almost equally distributed across the median and caudal lung fields. In the 100% group, a significantly greater degree of atelectasis was detected in the caudal lung field, compared with the median lung field. Moreover, the percentages of atelectatic surface area in the median and caudal lung fields were significantly higher in the 100% group, compared with values in the 40% group. In each study group, there was no difference in formation or distribution of atelectasis in affected lung fields between the right and left lungs.

Table 2—Regional distribution (%) of atelectasis within the lungs of isoflurane-anesthetized and dorsally recumbent dogs undergoing mechanical ventilation with gas mixtures containing either 40% or 100% inspired oxygen.

<table>
<thead>
<tr>
<th>Lung field</th>
<th>40% group (n = 10)</th>
<th>100% group (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apical</td>
<td>3.7 ± 2.3*</td>
<td>2.4 ± 1.1*</td>
</tr>
<tr>
<td>Median</td>
<td>46.6 ± 16.6</td>
<td>29.8 ± 6.6†</td>
</tr>
<tr>
<td>Caudal</td>
<td>50.0 ± 16.0</td>
<td>67.9 ± 6.7**</td>
</tr>
</tbody>
</table>

*Within a group, value was significantly (P < 0.05) different from the median field value. †Within a field, value was significantly (P < 0.05) different from that in the 40% group.

Discussion

The key finding of the present study in dogs undergoing inhalation anesthesia was that ventilation with 40% of inspired oxygen maintained significantly better lung aeration and gas exchange than ventilation with 100% oxygen. Compared with findings in dogs inhaling 40% oxygen, inhalation of 100% oxygen was associated with significant increases in nonaerated (increase of 10.3%) and poorly aerated (increase of 9.2%) lung areas and a reduction (decrease of 18.2%) in normally aerated lung areas. These changes negatively affected gas exchange, and P\textsubscript{A-a}o\textsubscript{2} was 176.7 ± 49.2 mm Hg in the 100% group and 35.6 ± 11.7 mm Hg in the 40% group.

In 1963, Bendixen et al11 detected a progressive decrease in lung compliance and gas exchange in anesthetized humans and animals during inspiration of oxygen-enriched gas mixtures. Following the advent of CT, Brismar et al12 determined that dense areas could be detected in dependent regions of both lungs of humans within 5 minutes of induction of anesthesia. Results of a morphologic study13 of similar dense areas in animals supported the diagnosis of atelectasis.

The technique used to characterize the aeration pattern of lungs on the basis of HUs (defining hyperinflated, normally aerated, poorly aerated, and nonaerated areas) was originally applied in humans with acute respiratory distress syndrome14 but has since been ap-
plied in several clinical and experimental studies15,16 in animals. To our knowledge, this is the first study to apply this classification in a clinical context in dogs; nevertheless, this classification has already been applied in previous experimental studies15,16 in dogs. In 1 study,16 the mean HU values representative of normally aerated lung areas in healthy dogs ventilated with 100% oxygen were -790 to -870 HUs.

Anesthesia-induced atelectasis is a well-known confounding factor that may influence the interpretation of diagnostic lung CT images.16 For this reason, in dogs undergoing thoracic CT for evaluation of the lungs, the scanning procedure is usually performed during inspiratory breath holding at 15 to 20 cm H\textsubscript{2}O, so that the alveoli that were collapsed at the end of expiration are reopened.16 In nonparalyzed dogs, a brief period of hyperventilation before the inspiratory breath hold allows CT to be performed while the dogs are apneic. Unlike a clinical situation, the specific aim of our study was to quantify the degree of anesthesia-induced atelectasis; therefore, in accordance with another study,17 we performed the CT procedure at the end of expiration. Moreover, because CT was performed during the period of apnea that follows the sudden discontinuation of mechanical ventilation in dogs undergoing anesthesia with isoflurane, hyperventilation was avoided, which could have induced resolution of part of the anesthesia-induced atelectasis. In the present study, spiral CT of the lungs was conducted and the procedures each required <1 minute for completion; thus, the CT examination was successfully completed during apnea in each dog.

Pulmonary atelectasis during anesthesia may be caused by compression of lung tissue, airway closure, and absorption of alveolar gas.1,3 Airway closure and absorption of alveolar gas (absorption atelectasis) are the 2 mechanisms that are influenced primarily by differences in F\textsubscript{io2}.1,18 In humans, induction of anesthesia causes a reduction of the FRC of the lungs, compared with FRC in the awake state.3,19 In contrast, the lung closing capacity is not influenced to the same extent by anesthesia.19 Hence, there is a change in the relationship between FRC and closing capacity during anesthesia, with the closing capacity exceeding FRC in the distal part of the bronchial tree.18,19 Because of this alteration, there is complete or partial closure of the distal portions of the airways and lung units with pockets of trapped gas or alveoli with a low V\textsubscript{A}/Q ratio (ie, poorly aerated areas) are formed.1,18 Mixed-venous blood continues to perfuse areas in the lung affected by airway closure, which causes progressive gas uptake by continuing blood flow and results in alveolar collapse and atelectasis. The rate of absorption of gas from an unventilated lung area increases with an increase of F\textsubscript{io2}.18,20,21 In poorly aerated areas (ie, areas characterized by partial airway closure), the inspired V\textsubscript{A}/Q ratio of a lung unit decreases. Eventually, a point is reached where the rate at which inspired gas enters the alveolus is equal to the amount of gas taken up from the alveolus into blood. This point is known as the critical V\textsubscript{A}/Q ratio.9,22 If the inspired V\textsubscript{A}/Q ratio is lower than the critical V\textsubscript{A}/Q ratio, the lung unit will collapse. This is more likely to occur when F\textsubscript{io2} is high and thus gas uptake is large.9,22

To explain the results of pulmonary aeration assessments in the present study, we must assume that in the
100% group, the high FiO₂ induced more rapid collapse of lung units affected by airway closure (contributing to an increase in atelectasis), collapse of more lung units with low V/Q ratio (contributing to an increase in atelectasis), and formation of more lung units with low V/Q ratio (contributing to an increase of poorly aerated areas) than developed in dogs ventilated with an FiO₂ of 0.4. In a previous study in dogs, Lundquist et al. identified a lack of pulmonary densities in dependent lung regions of dogs that were ventilated with room air during barbiturate anesthesia. The results of that study are in agreement with our findings and would suggest that further reduction of FiO₂ to 0.21 may be associated with almost complete absence of nonaerated areas in lungs of anesthetized dogs.

As in humans, atelectatic areas were found predominantly in the caudal dependent lung field (ie, cranial to the diaphragm) in the dogs of the present study. The diaphragm separates the intrathoracic cavity from the abdominal cavity and allows different pressures to exist in the thorax and abdomen. After induction of anesthesia, the diaphragm relaxes and moves cranially; therefore, it is less effective in maintaining different pressures in the 2 body cavities. More specifically, the pleural pressure increases much more in the dependent portion of the thorax, compressing adjacent lung tissue. In dogs ventilated at an FiO₂ of 0.4, the small degree of atelectasis (2.3 ± 0.9%) was almost equally distributed between median and caudal lung fields, whereas in dogs ventilated at an FiO₂ of 1.0, a significantly greater amount of atelectasis was present in the caudal lung field, compared with that in the median and cranial lung fields.

Formation of atelectatic units and units with a low V/Q ratio is responsible for impairment of gas exchange. In collapsed lung areas that are still perfused, a complete shunt situation develops with lack of any gas exchange. Perfusion of regions with low V/Q ratio will also impede oxygenation of blood to an extent that is directly related to the change of the V/Q ratio. Thus, compared with the 40% group, the significantly greater amount of nonaerated and poorly aerated lung areas and the smaller amount of normally aerated lung area in the 100% group can explain the significant increase in PaO₂/FAO₂ in this group. The significantly lower PaO₂ in dogs ventilated with 40% inspired oxygen (211.4 ± 11.9 mm Hg), compared with dogs ventilated with 100% oxygen (499.4 ± 49 mm Hg), was attributed to the lower FiO₂ administered in the former group. However, the PaO₂ achieved in the 40% group can still be considered a safe level of arterial oxygenation, especially if it is associated with a low PaO₂/PaO₂ gradient.

Atelectasis also plays an important role in the postoperative period. In humans, the formation of pulmonary atelectasis during anesthesia is an important factor for the onset of postoperative hypoxemia because atelectasis resolves only within 24 hours after surgery. Results of recent studies have indicated that hypoxemia during the postoperative period could be an important complication in dogs that have undergone abdominal surgery during anesthesia with volatile agents delivered in 100% oxygen, even in dogs without preexisting lung disease. Although more studies are needed to better define the time necessary to resolve anesthesia-induced atelectasis and the impact of atelectasis formation on gas exchange in the postoperative period in dogs, one may assume that there is a correlation between development of anesthesia-related pulmonary atelectasis and hypoxemic events following anesthesia. In addition, atelectasis may contribute to the development of pneumonia after surgery, secondary to bacterial entrapment in alveoli.

The use of low FiO₂ is considered a preventative measure to reduce formation of absorption atelectasis. In humans, PEEP and recruitment maneuvers can also be applied for intraoperative treatment of anesthesia-induced atelectasis. The application of increasing levels of PEEP can be useful for the re-expansion of collapsed alveoli. Some patients require high levels of PEEP to re-expand atelectatic lung areas, potentially causing pronounced impairment of important hemodynamic and respiratory functions that can limit its application. Application of low levels of PEEP from the beginning of anesthesia could be a better strategy to prevent atelectasis formation. The recruitment maneuver is a technique that has been used in humans to re-expand collapsed alveoli via pulmonary hyperinflation. It involves administration of breaths of sufficient tidal volume to cause airway pressures to increase to 30 to 40 cm H₂O. Various protocols of recruitment maneuver for use in humans have been reported, also in combination with PEEP. The high airway and intrathoracic pressures that are achieved during the recruitment maneuver limit its application to relatively short episodes (10 to 15 seconds’ duration) to avoid severe impairment of hemodynamic and pulmonary functions. After a recruitment maneuver, reduction of FiO₂ allows the re-expanded alveoli to remain open for a longer period (40 minutes), compared with maintenance of high FiO₂, which favors the re-collapse of previously expanded alveoli within 5 minutes.

Future studies are required to evaluate the efficacy of the recruitment maneuver and PEEP techniques of ventilation in minimizing the extent of anesthesia-induced atelectasis in anesthetized dogs. Regardless, in the present study of healthy dogs positioned in dorsal recumbency and undergoing inhalation anesthesia with mechanical ventilation, an FiO₂ of 0.4 provided significantly greater lung aeration and gas exchange than that achieved with an FiO₂ of 1.0.

References

