Urokinase is a chymotrypsin-like serine protease and an endogenous extrinsic plasminogen activator that is important in conversion of the circulating proenzyme plasminogen into the active serine protease plasmin. Urokinase is a single-chain glycoprotein with a molecular weight of 53 kd in the high–molecular-weight form and 33 kd in the low–molecular-weight form. Urokinase promotes fibrinolysis by catalyzing the cleavage of plasminogen to plasmin. Urokinase receptor, a 60- to 65-kd glycer-phosphatidyl–linked glycoprotein, is a membrane-bound protein that binds to uPA to localize degradation of extracellular and basement membranes.

In humans, uPA is produced primarily by renal parenchymal cells and excreted in the urine. Secretion of uPA by bovine urothelial cells in vitro has also been described. One proposed role of uPA in the urinary tract is to ensure patency throughout its many tubular structures during hemorrhage. The presence of uPAR on cell surface membranes is important, but not necessary, for the activity of uPA in the tissues. However, in humans, uPA concentration and activity are increased in inflammatory and other pathologic conditions of the urinary tract, and uPAR on the cell membrane is increased in many neoplastic cell lines and inflammatory processes.

The purpose of the study reported here was to determine distribution of uPA-like and uPAR-like proteins in the urinary tract of healthy dogs.

Objective—To determine distribution of urokinase plasminogen activator-like protein and urokinase plasminogen activator receptor-like protein in urinary tract tissues of healthy dogs.

Animals—11 healthy dogs.

Procedures—Necropsy specimens from kidney, ureter, bladder, urethra, prostate, and testis were obtained from 4 sexually intact female dogs, 5 sexually intact males, and 2 castrated males; dogs ranged in age from juvenile to adult. Urokinase plasminogen activator-like protein and urokinase plasminogen activator receptor-like protein in tissue lysates from kidney, prostate, and testis were identified by use of SDS-PAGE, western blot analysis, and immunoprecipitation. Urokinase plasminogen activator-like protein and urokinase plasminogen activator receptor-like protein in kidney, ureter, urinary bladder, urethra, prostate, and testis were identified by use of immunohistochemical staining of tissue sections.

Results—Urokinase plasminogen activator-like protein and urokinase plasminogen activator receptor-like protein in the molecular-weight range published for urokinase and urokinase receptor (53 and 33 kd for urokinase and 60 to 65 kd for urokinase receptor) were identified. Distribution of the proteins identified by use of immunohistochemical staining was comparable with published information for humans and mice for the urinary tract. Staining of these proteins was detected in more tissue types than reported in healthy humans.

Conclusions and Clinical Relevance—Urokinase plasminogen activator-like protein and urokinase plasminogen activator receptor-like protein were detected in the urinary tract of healthy dogs. This information is important for further evaluation of the functions of urokinase and urokinase receptor in the canine urinary tract and the pathophysiologic features of urinary tract disease.
examination, absence of gross pathologic abnormalities in the urinary tract, and absence of histopathologic abnormalities as determined by evaluation of H&E-stained tissue sections from the urinary tract. Dogs were euthanized for purposes other than this study by IV administration of sodium pentobarbital (120 mg/kg). Dogs were not scheduled for euthanasia because of positive results of heartworm antigen tests following a terminal surgical exercises laboratory that did not involve the urinary tract. All procedures were approved by the institutional animal care and use committee.

Specimens—Tissue specimens were collected immediately after euthanasia from kidney, ureter, urinary bladder, urethra, prostate, and testis from 5 sexually intact male dogs; kidney, ureter, urinary bladder, urethra, and prostate from 2 castrated male dogs; and kidney, ureter, urinary bladder, and urethra from 4 sexually intact female dogs. A 2×1-cm full-thickness wedge was taken from 1 testis. Tissue specimens for morphologic study were immediately snap-frozen in liquid nitrogen. Specimens were stored at –80°C until preparation for morphologic study and immunohistochemical staining.

Antibodies—Antibodies used in the study were mouse monoclonal antibody against mouse urokinase, mouse monoclonal antibody against human urokinase B-chain; mouse monoclonal antibody against human urokinase receptor CD87; and goat polyclonal peroxidase conjugated anti-mouse IgG.

SDS-PAGE and western blot analysis—Samples of kidney tissues from all groups of dogs were pooled. Samples of prostate tissue from all male dogs were pooled. Samples of testis tissues from all male intact dogs were pooled. Each pooled tissue sample was manually crushed with a tissue grinder in RIPA lysis buffer and protein bands were separated by SDS-PAGE at room temperature at 100 mV for 2 hours. The separated proteins were transferred to a nitrocellulose membrane by electrotransfer at 100 mV for 2 hours or until the dye reached the bottom of the gel. Molecular-weight markers were electrotransferred in the first lane beside the samples for identification of the molecular weight of each protein band. Separated proteins were transferred from the SDS gel to polycrylamide gel in 1× transfer buffer at a temperature of 4°C. The resulting tissue lystate was transferred to polypropylene screw-cap microtubetes by use of a pipette and frozen at –20°C for later analysis. Intensity of staining was subjectively evaluated by 1 investigator (DP).

Results—Western blot analysis resulted in 2 distinct 53-kd- and 33-kd–molecular-weight protein bands (Figure 1). Immunoprecipitation enhanced visualization of the protein bands in the prostate and testis samples. The intensity of the band obtained by use of the kidney lystate was not visually different than that obtained without immunoprecipitation. Without immunoprecipitation, a much stronger band was observed in the kidney than the testis and prostate. Both antibodies that were used successfully precipitated the urokinase-like antigen.
uPAR-like protein—Western blot analysis with and without immunoprecipitation of kidney, prostate, and testis lysates with human monoclonal uPAR antibody resulted in a distinct protein band at 65 kd. Immunoprecipitation enhanced the visualization of the protein bands in the prostate, kidney, and testis (Figure 2). The mouse anti-human antibody successfully precipitated the uPAR-like antigen.

Immunohistochemical staining in kidney—Staining for uPA-like protein in the kidney was consistent across all dogs. Staining was red to red-brown and uniform in the tubular epithelial cells throughout the cortex and medulla (Figure 3). In some sections, cells in the medullary tubules stained more intensely than cells in the proximal convoluted tubules. There was staining in the endothelial cells of the glomeruli in some kidneys.

Infrequent macrophages were stained. Endothelial cells of arteries and veins also stained. Staining was observed in the mucosa of the renal pelvis in the cytoplasm of the luminal cells in the transitional epithelium; this occurred in distinct segments. Within the renal pelvis, the transitional epithelium had an undulating appearance. The segments of transitional epithelium that appeared recessed, compared with the open cavity of the renal pelvis, stained throughout all cell layers, extending to but not including the lamina propria. The segments that were not recessed stained only along the membrane of the luminal cell layer or, in some segments, did not stain at all.

Immunohistochemical staining in ureter—Intense and uniform staining for uPA-like protein was detected along the luminal cell membrane of transitional epithelium and in the cytoplasm of all layers of transitional epithelial cells of the mucosal lining. The cytoplasm of infrequent macrophages in the connective tissue of the ureter wall and vascular endothelial cells stained as well.

Granular staining for uPAR-like protein was in the cytoplasm of the luminal and, sometimes, second layer of transitional epithelium. No staining was detected in the deeper cells of the transitional epithelium. There was staining of infrequent macrophages in the connective tissue of the ureter wall (Figure 3).

Immunohistochemical staining in urinary bladder—Variable staining for uPA-like protein was present in the transitional epithelium of the urinary bladder. Some segments of the mucosa stained throughout all cells in the luminal layer on both the cell membrane and in the cytoplasm. Other segments had staining only on the surface layer or not at all. The segments that had staining were often invaginated or depressed with respect to the luminal edge of the transitional epithelium, and there was increased vacuolization of the cytoplasm in the stained cells. There was also staining of the cytoplasm of smooth muscle cells and skeletal muscle cells, endothelial cells of vessels, and infrequent macrophages in the urinary bladder wall. Two of the urinary bladder sections had inflammation consistent with chronic cystitis and had intense uPA-like protein staining of the mucosa in the same segmental pattern as tissue samples with no evidence of inflammation. In the inflamed tissue, staining was more intense than in normal tissue. Staining was present in all cell layers of the transitional epithelium and was more intense in the invaginated segments.

Granular staining for uPAR-like protein was detected along the luminal surface of the transitional epithelium. Granular staining of the cytoplasm of these cells was evident in some regions, extending only to the first 1 to 2 layers of cells. Infrequent macrophages were detected in the urinary bladder wall and stained consistently.

Urethra—Consistent staining for uPA-like protein was evident in the transitional epithelium along the luminal border and in the cytoplasm of the cells extending all the way through the mucosa. This pattern of staining was similar to that observed in the urinary bladder mucosa in areas that had high numbers of cells with vacuolated cytoplasm and were invaginated. In other areas of the urethral mucosa, the staining was only at the luminal surface, and some sections did not stain. There was staining in infrequent macrophages in the connective tissue of the urethral wall. There was no difference in the pattern of staining observed between the transitional epithelium of the prostatic and penile urethra of male dogs.

There was granular staining for uPAR-like protein of transitional epithelium of the ureter on the luminal surface of the cells and in the cytoplasm of the cells closest to the lumen. There was staining in the infrequent macrophages in the connective tissue of the urethral wall. In some sections, the staining was more intense in the cells of the transitional epithelium of the prostatic urethra than in the cells of the transitional epithelium of the penile urethra.

Prostate—Staining for uPA-like protein in the prostate was highly variable. Males 1 through 5 were sexually intact, and males 6 and 7 were neutered. Male 1 had a mature prostate and had variable faint staining in the cytoplasm of the connective tissue cells of glandular epithelium, but most glandular tissue did not stain. Epithelial cells lining the prostatic ducts did not stain. There was staining of infrequent macrophages in the connective tissue of the prostate. Male 2 had a mature prostate with some evidence of hyperplasia. Some faint staining of the cytoplasm of glandular cells was seen, but most of the glandular cells did not stain. Male 3 had a mature, hyperplastic prostate. Fixation of the tissue was not optimal, but there was faint staining.
of some glandular cells. Male 4 was a young dog, and the prostate had little acinar development. There was intense staining in the epithelial cells lining the developing ducts (Figure 3). Staining was less intense in epithelial cells of more differentiated ducts. There was staining of infrequent macrophages in the glandular connective tissue. Male 5 had a mature prostate with multiple hyperplastic and cystic regions. Epithelium in the ducts and glands of the cystic regions had moderate to intense staining. There was faint to no staining in the glandular cells of the hyperplastic regions. Male 6 had a normal prostate, and no staining was detected in glands or ducts, except for faint staining in the cytoplasm of a few foamy glandular prostatic cells. Male 7 had a hypoplastic prostate. There was staining in epithelial cells of the prostate glands and ducts, infrequent macrophages in the connective tissue, and endothelial cells of vessels. There was inconsistent but intense staining in the cytoplasm of epithelial cells lining primitive or poorly differentiated ducts.

There was no uPAR-like protein staining in most prostatic sections. There was staining of infrequent macrophages in the connective tissue, which acted as an internal control. Male 4 was young but sexually intact and had granular staining in the epithelial cells of the developing ducts at the apical surface and the cytoplasm (Figure 3). Staining was also detected in the epithelial cells of the more mature ducts at the apical borders. Staining intensity was equal to that in the less mature ducts. Intense staining was evident in interstitial resident macrophages. Male 7 was neutered and had a hypoplastic prostate. There was granular staining in the apical region of epithelial cells lining primitive or poorly developed ducts. There was staining of infrequent macrophages in the glandular connective tissue.

Testes—There was intense staining for uPA-like protein in all interstitial cells and seminiferous tubules, including all phases of spermatogonia. There was faint staining for uPAR-like protein in the cytoplasm of interstitial cells but no staining of seminiferous tubules or spermatogonia. There was staining of infrequent macrophages in the connective tissue.

Discussion

High–molecular-weight uPA and low–molecular-weight uPA are 53 and 33 kd, respectively.21,22 The molecular weight of uPAR is more variable but usually is from 65 to 60 kd.123 These molecular weights were used as references for western blots to positively identify uPA-like and uPAR-like proteins in the study reported here. Immunoprecipitation concentrated the proteins and enhanced visualization of the protein bands in prostate and testis tissue lysates.

The canine kidneys had staining for uPA-like protein in the epithelium of all renal tubules and staining along the epithelial cells of the glomeruli in most specimens. Detection of uPA-like protein in the kidneys of the dogs studied was consistent with that reported for humans and mice.24–27 Immunohistochemical staining cannot be used to differentiate whether the antigen is present because of synthesis in the cells or because of binding to a receptor in or on the cell membrane. However, in vitro and in vivo studies24,27,28 of cell lines from human mesangial and tubule cells reveal that uPA is synthesized and secreted by glomerular visceral epithelial cells and kidney tubular epithelial cells. Given these findings in other mammalian species, the uPA-like protein in the renal tubules and glomeruli of the dogs reported here was likely synthesized there also. To verify this, cell culture studies would be required to verify secretion of uPA-like protein into the cell medium.

In the kidney, intense uPA-like protein staining was also detected along the transitional epithelium of the renal pelvis. Detection of uPA and associated fibri-
nolytic activity has been reported in epithelial cells of
the renal calyces of humans. Urokinase is produced in
the transitional epithelial cells in cattle but has not
been investigated in other species. In the tubular
structures of the urinary tract, uPA is important for
maintaining patency during hemorrhage and fibrin
deposition.

Urokinase receptor staining is not detected in the
kidneys of mice. This is consistent with findings in
humans in which uPAR staining is not detected in the
tubules of the kidneys of healthy donors. In another
human study, glomerular cells in healthy kidney sam-
ple were not stained. In the dog kidneys of the present
study, uPAR-like protein was detected along the base-
ment membrane of renal tubular cells. This could indi-
cate that in healthy dogs, kidneys produce uPAR-like
protein, which would be different from humans. Many
of the dogs in the present study had heartworm dis-
ease, indicated by microfilariae in glomeruli. This may
have resulted in mild glomerulonephritis and increas-
ed production of uPA-like protein. However, histo-
pathologic evidence of glomerulonephritis was not
detected. On the basis of our histologic findings,
we believe that uPAR-like protein is present in the kid-
neys of healthy dogs. The role of uPAR-like protein and
its sites of production cannot be determined without
additional studies such as cell culture.

Transitional epithelium in the renal pelvis had
staining for uPAR-like protein along the luminal sur-
face and in the cytoplasm of luminal cells in the same
regions as uPA-like protein staining. This may indicate
that uPA-like protein is bound to uPAR at the cell sur-
face or that uPA-like protein is produced in this tissue.

The pattern of uPA-like protein staining along the
mucosal surfaces of the urinary tract was consistent
among sections and sites. The ureter stained intensely,
whereas staining in the urinary bladder and urethera
was variable. The segments of transitional epithelium
commonly stained were areas that appeared to be
invaginated or depressed with respect to the lumen and
had vacuolization in the cytoplasm of the stained cells.
The importance of this finding was unknown. The
stained regions may have indicated areas of uPA bind-
ing to cells that were damaged or being renewed, or
these regions may have been indicative of uPA-produc-
ing cells in the transitional epithelium. Bovine urothe-
lium produces uPA in culture medium.

Urokinase receptor-like protein had a pattern of
staining similar to that of uPA-like protein. It differed
in that its appearance was granular and the staining
was limited to the luminal surface and the cytoplasm of
the first 1 to 2 layers of cells within the transitional
epithelium. This pattern could indicate that uPA-like
protein was produced and secreted by the deeper cells
layers and then bound to the luminal layers by uPAR-
like protein. These luminal layers are rapidly shed and
replenished in the urinary tract.

The variability of staining for uPA-like protein in
the prostate tissue suggests the interesting possibility
that production of uPA-like protein and uPAR-like pro-
tein may depend greatly on stage of development of the
prostate. In rats, uPA production is influenced by hor-
mones and is evident immunohistochemically in
scattered cells at the surface of the epithelium facing
the lumen of the glandular ducts. Staining is greater in
castrated rats, which suggests a role for uPA in the
involution of the prostate and normal turnover of
prostate epithelium. Increased activity of plasmino-
gen activators is detected via plasminogen activator
assays in developing prostate tissue. This activity
decreases when development is complete. This is con-
sistent with the role of uPA and other plasminogen
activators in tissue remodeling. This is supported by
the findings of the present study in which staining of
uPA-like protein and uPAR-like protein appeared to be
limited to only developing ductile tissue. More speci-
mens obtained at certain developmental stages are
required to adequately characterize uPA-like protein
and uPAR-like protein in the prostate of dogs.

Most prostate samples evaluated did not stain for
uPAR-like protein. Male 4 was sexually intact, and
staining was evident in the epithelial cells of the de-
veloping prostatic ducts and mature prostatic ducts at
the apical surface and in the cytoplasm. Male 7 was
neutered, but the prostate appeared hypoplastic or
atrophied, suggesting that castration had been per-
formed at a young age. Granular staining was detected
around primitive or poorly developed ducts in the api-
cal region. Staining for uPA-like protein and uPAR-like
protein in the same regions indicated that uPA-like
protein was either produced in these tissues or bound
to the cells. It is possible, given the abundance of uPA-
like protein in the other tissues of the urinary tract,
that urokinase is truly bound at this site but produced
elsewhere. Urokinase plasminogen activator-like pro-
tein and uPAR-like protein may contribute to tissue
remodeling in the prostate of dogs. The importance
of uPA and uPAR in development of the gland and invo-
lution after castration is evident in rat models of
prostate development.

Intense staining for uPA-like protein was seen in sec-
tions of testes in the seminiferous tubules and interstitial
cells of dogs in the present study. This has been reported
in rhesus monkeys and humans. Urokinase in the
testes is believed to play a role during spermatogenesis
and in spermatozoal motility. It has been suggested that
infertility in some men may be attributable to low con-
centrations of uPA in the testes. Urokinase plasminogen
activator receptor-like protein was not detected via stain-
ing in the seminiferous tubules of the dogs reported here.
Staining was very weak in the cytoplasm of the intersti-
tial cells. This observation differs from published data in
rhesus monkeys and mice, in which uPAR was identified
at high concentrations. Results of the western blot
assays revealed that a uPAR-like protein was present in
the canine testes. The low-degree staining of uPA bind-
ing to cells that were damaged or being renewed, or
these regions may have been indicative of uPA-produc-
ing cells in the transitional epithelium. Bovine urothe-
lium produces uPA in culture medium.

1632 AJVR, Vol 67, No. 9, September 2006

Unauthenticated | Downloaded 06/05/22 12:33 AM UTC
All urinary tract tissues examined had low numbers of macrophages that stained for uPA-like protein and uPAR-like protein. Macrophages secrete uPA and have uPAR on the cell membranes.\(^{6,14-16}\) Macrophages were interpreted as an internal control to verify that the staining protocol was working in tissues that otherwise had low levels of staining. Urokinase and uPAR play important roles in macrophage differentiation during inflammation and neoplasia and contribute to fibrosis, angiogenesis, and basement membrane degradation in affected tissues.\(^{17,18,67}\) The tissue sections from the urinary tract of all dogs in the present study had normal histologic features. The numbers of macrophages were typical for healthy urinary tract tissues, as judged on the basis of the experience of the pathologist (DBP) who evaluated the tissues. In the kidneys of healthy mice and mice with experimentally induced urinary tract obstruction, macrophages are in low numbers (<5 cells/12 hpfs). Within 1 day of urinary obstruction, this number increases to a mean of 112.7 ± 20 cells/12 hpfs, which is a rapid increase in macrophage numbers in a short period.\(^{16}\) One would expect that in dogs with inflammation, infection, or neoplastic disease affecting the kidneys, much higher numbers of macrophages would have been present in the tissue sections examined. Because the kidney is not unique in its response to these types of diseases, it is expected that other tissues of the urinary tract would respond in similar ways with respect to migration of macrophages to sites of injury. The 2 sections of urinary bladder wall that had evidence of chronic cystitis had characteristic increases in neutrophils and macrophages, as would be expected with inflammation.

We hypothesized that urokinase would be present in the canine urinary tract on the basis of evidence of its presence in human studies; however, identification of urokinase in the canine urinary tract has not been reported. Cell types that stained for uPA-like protein and uPAR-like protein in the canine tissues were consistent with those described in humans, rats, monkeys, and uPAR-like protein in the canine tissues were reported. Cell types that stained for uPA-like protein of urokinase in the canine urinary tract has not been detectable in the tissues of the urinary tract of healthy dogs, but their role in maintenance of the healthy urinary tract is unknown. Many disease processes of the urinary tract have some degree of inflammation or infection associated with them. In humans, increased presence of uPAR occurs in such inflammatory processes. Increased presence of receptors would theoretically lead to increased binding of uPA and possibly trigger increased production of uPA that might enter the urine. Further studies are required to elucidate the role of uPA and uPAR in the pathophysiologic processes associated with urinary tract disease.

References

