In vitro evaluation of canine and feline calcium oxalate urolith fragility via shock wave lithotripsy

Larry G. Adams, DVM, PhD; James C. Williams Jr, PhD; James A. McAteer, PhD; Erin K. Hatt BS; James E. Lingeman, MD; Carl A. Osborne, DVM, PhD

Objective—To test the hypothesis that feline calcium oxalate uroliths are intrinsically more resistant to comminution via shock wave lithotripsy (SWL) than canine calcium oxalate uroliths through comparison of the fragility of canine and feline uroliths in a quantitative in vitro test system.

Sample Population—Calcium oxalate uroliths (previously obtained from dogs and cats) were matched by size and mineral composition to create 7 pairs of uroliths (1 canine and 1 feline urolith/pair).

Procedure—Uroliths were treated in vitro with 100 shock waves (20 kV; 1 Hz) by use of an electrohydraulic lithotripter. Urolith fragmentation was quantitatively assessed via determination of the percentage increase in projected area (calculated from the digital image area of each urolith before and after SWL).

Results—After SWL, canine uroliths (n = 7) fragmented to produce a mean ± SD increase in image area of 238 ± 104%, whereas feline uroliths (7) underwent significantly less fragmentation (mean image area increase of 78 ± 97%). The post-SWL increase in fragment image area in 4 of 7 feline uroliths was < 50%, whereas it was > 150% in 6 of 7 canine uroliths.

Conclusions and Clinical Relevance—Results indicate that feline calcium oxalate uroliths are less susceptible to fragmentation via SWL than canine calcium oxalate uroliths. In some cats, SWL may not be efficacious for fragmentation of calcium oxalate nephroliths or ureteroliths because the high numbers of shock waves required to adequately fragment the uroliths may cause renal injury. (Am J Vet Res 2005;66:1651–1654)
uroliths), 100% calcium oxalate dihydrate (designated COD uroliths), or both calcium oxalate monohydrate and calcium oxalate dihydrate (designated COM-COD uroliths) were retrieved from collections at the Minnesota Urolith Center. The uroliths were matched by size and composition to create 10 pairs of uroliths (1 canine and 1 feline urolith/pair). The mean maximum diameter for the feline and canine uroliths was 3.9 ± 1.3 mm and 4.1 ± 1.5 mm, respectively.

Uroliths were evaluated via micro–computed tomography (micro-CT) to exclude those with preexisting cracks (Figure 1). Three pairs of uroliths were excluded from further study because of preexisting cracks; thus, there were 4 COD urolith pairs, 2 COM urolith pairs, and 1 COM-COD urolith pair for evaluation via in vitro fragmentation. The area of digital images of the uroliths was obtained by scanning uroliths on a flatbed optical scanner prior to SWL. Uroliths were hydrated in saline (0.9% NaCl) solution for 4 days and then treated with 100 shock waves (20 kV; 1 Hz) by use of a research electrohydraulic lithotripter that had the same acoustic output as the unmodified, first-generation, waterbath-type lithotripter. Urolith fragments were scanned, and the increases in digital image area of fragments were compared with the area of uroliths before shock wave exposure (Figure 2). To validate the size pairing, the sizes of canine and feline uroliths prior to fragmentation were compared by use of an unpaired t test. The difference in the percentage increase in digital surface area of uroliths following SWL between canine and feline uroliths was compared by use of an unpaired t test. For all comparisons, a value of $P < 0.05$ was considered significant.

Results

Prior to fragmentation, there was no significant ($P = 0.82$) difference between the size of canine and feline uroliths, as determined by use of an unpaired t test. After SWL, significantly ($P < 0.02$, by unpaired t test) less fragmentation was observed in feline uroliths, compared with that which occurred in canine uroliths (Figure 3). Canine uroliths ($n = 7$) fragmented with a resultant mean increase in image area of $238 \pm 104\%$, whereas feline uroliths (7) fragmented with a resultant mean increase in image area of $78 \pm 97\%$. The increase

Figure 1—Micro-computed tomographic image of a calcium oxalate monohydrate (COM) urolith obtained from a cat. Notice that this urolith has a preexisting crack (arrows); because of the crack, this urolith and its paired canine urolith (matched on the basis of size and composition) were both excluded from the shock wave lithotripsy (SWL) fragmentation study.

Figure 2—Representative digital image of a calcium oxalate urolith from a dog before (A) and after SWL (B). Notice the increased image surface area after fragmentation via SWL. For this urolith, the percentage increase in area was $100 \cdot \left(\frac{17 - 3.92}{3.92} \right) = 334\%$.

Unauthenticated | Downloaded 11/12/23 04:05 PM UTC
These in vitro data confirm the clinical observation that feline calcium oxalate uroliths are less susceptible to fragmentation via SWL than canine calcium oxalate uroliths. This has important clinical implications for treatment of nephroliths and ureteroliths in cats. At present, obstructive ureteroliths in cats are most often managed by use of microsurgical techniques with intensive pre- and postoperative care.5

Shock wave lithotripsy might be an alternative to surgical management of ureteroliths, provided that safe and effective protocols for SWL in cats can be established. The results of the present in vitro study suggest that SWL has been ineffective in some cats because feline calcium oxalate uroliths are more resistant to fragmentation than uroliths obtained from dogs. Therefore, for SWL treatment to be successful in cats, greater numbers of shock waves than have been used in successful treatment of uroliths in dogs would be required.

Although it was initially thought that clinical applications of SWL did not cause renal injury, results of recent studies11-18 indicate that SWL does cause considerable renal injury, the severity of which is dependent on the number and voltage of the applied shock waves. The effects of shock wave treatment on renal function and structure in cats has only been studied in limited numbers of cats that received relatively low doses of shock waves. Gonzales et al1 reported that exposure of the left kidneys of 4 adult, non–stone-bearing cats to shock waves generated by second-generation, dry lithotripter4 did not result in significant change in glomerular filtration rate (GFR). In that study, GFR was assessed before and 2 weeks after delivery of 2,000 to 2,400 shock waves (24 kV; 1 Hz) to only the left kidney of each cat. Renal ultrasonography performed 1 and 14 days after shock wave treatment did not reveal any morphologic changes in the treated kidneys, compared with the untreated kidneys. However, because many of the changes in renal function occur within the first hours after shock wave treatment,13,15 evaluation of GFR 14 days after shock wave treatment is not adequate to assess shock wave-induced changes in renal function in cats. Clinically relevant decreases in GFR could occur in the first 24 to 48 hours after shock wave therapy.

We previously evaluated the safety of shock wave treatment in 3 non–stone-bearing adult cats, using an unmodified, first-generation, waterbath-type lithotripter.5 Bilateral shock wave treatments resulted in functional and morphologic changes that were proportional to the number of shock waves administered to the kidney. After treatment of the left kidney (1,300 shock waves [14 kV; 2 Hz]) and right kidney (1,000 shock waves [14 kV; 2 Hz]) in each cat, mean GFR decreased by approximately 33% and 25% 1 and 4 days after shock wave treatment, respectively.5 Similarly, 3 of 5 stone-bearing cats that were treated by use of the same lithotripter had clinically relevant increases in serum creatinine concentration 12 to 24 hours after SWL.7 On the basis of the limited scope of these prior safety studies and the fact that feline calcium oxalate uroliths are more resistant to fragmentation via SWL,
additional studies are needed to establish the safety of shock wave treatment of the kidneys of cats, including the assessment of the effects on renal function and structure after treatment with high numbers of shock waves.

The greater fragility of canine uroliths, compared with feline uroliths, could be a result of microstructural differences. In the present study, such differences were detected between micro-CT images (obtained before SWL treatment) of some of the paired feline and canine uroliths; canine uroliths typically had an x-ray lucent core and obvious lamellation that was not detected in the paired feline uroliths. Such layering could facilitate establishment of internal fracture planes, resulting in greater shock wave-induced comminution of the canine uroliths. Computer modeling of shock wave propagation through laminated stones has determined that there is reflection of multiple tensile waves at the crystal-to-matrix boundaries.3 Reflected tensile waves may contribute to internal spalling damage and layer separation, which could account for greater comminution of laminated uroliths.3 Spalling refers to the fragmentation of uroliths via layer separation. However, although there were no obvious micro-CT differences between paired COD uroliths, canine COD uroliths were more easily fragmented than the feline COD uroliths in the present study. This observation prompts the question whether the difference in fragility between canine and feline uroliths might be attributable to differences in the organic matrix component of the uroliths of these 2 species.19 Further studies designed to detect differences in the organic matrix of canine and feline calcium oxalate uroliths are needed to answer this question. Such interspecies comparison, in which mineral type is not the determining factor, could provide a unique opportunity to investigate whether other features (eg, urolith structure or the composition of the organic matrix) play an important role in urolith fragility.

References

b. Scanco micro-CT 20 instrument, Scanco Medical AG, Bassersdorf, Switzerland.
d. Dornier MFL-5000, Dornier, Marietta, Ga.