Use of corrosion casting techniques to evaluate coronary collateral vessels and anastomoses in hearts of canine cadavers

Arne Noestelthaller, Dr med vet; Alexander Probst, Dr med vet; Horst E. Koenig, Dr med vet

Objective—To study and investigate branching patterns of the canine coronary arteries and collateral circulation by use of corrosion casting techniques. Sample Population—31 hearts obtained from cadavers of clinically normal dogs of various ages and breeds and of either sex. Procedure—3-dimensional reproduction of coronary arteries was achieved by postmortem injection and perfusion with casting materials into the aortic sinus via the ascending aorta. Perfused hearts were macerated and carefully irrigated; the air-dried specimens were examined macroscopically and with a magnifying headset. Results—Collateral arteries and inter- and intra-arterial anastomoses were successfully detected in 8 corrosion cast specimens. In total, 9 coronary collateral arteries and 3 interarterial anastomoses were found. Conclusions and Clinical Relevance—Our finding of coronary collateral arteries in canine hearts is in agreement with recent findings in coronary flow study. On the basis of our results, vasodilation treatment to improve collateral vessel remodeling in dogs with myocardial dysfunction may be warranted. (Am J Vet Res 2005;66:1724–1728)

Controversy has existed for decades about the presence and true functional importance of the coronary collateral system.1 Postmortem morphologic studies on anatomy, distribution, and anastomoses of coronary arteries in normal and pathologic human hearts have been pursued for hundreds of years.1 Dogs have been used in recent years to study the development of coronary collateral arteries after progressive coronary artery obstruction; the latest findings suggest that dogs have an intermediate density of preexisting (or native) collateral arteries that can deliver, on average, 5% to 10% of basal flow before occlusion.2–5

Collateral vessels are defined as interconnections with myocardial dysfunction may be warranted. Other terms and synonyms for anastomoses are intercoronary anastomoses,12–13 intercoronary collateral channels,14 intercoronary interarterial anastomoses,15 and interarterial anastomoses.16 Alternative terms for collateral vessels are the following: collateral anastomoses or homocoronary anastomoses12–13, coronary collateral vessels, collateral connections, or collateral channels12–15, and intra-arterial anastomoses.5

Collateral vessels were further differentiated into preexisting (or native) and mature collateral vessels in coronary collateral angiogenesis and flow studies.4,17 The native collateral network in the canine heart is predominantly epicardial in origin, although endocardial connections are known to exist.11,17,18 Schaper17 described these native vessels as small arterioles, averaging 40 µm in diameter, thin-walled, and having only 1 or 2 smooth muscle layers.

By definition, anastomoses are interconnections between vessels from 2 territories of blood supply,4 for example, interconnections between the left coronary artery (LCA) and right coronary artery (RCA). Collateral vessels are defined as interconnections within a territory of blood supply, for example, collateral channels between the circumflex and left cranial descending branches of the LCA.6

In the literature,9–11 anastomoses and collateral vessels are often used as synonyms. Other terms and synonyms for anastomoses are intercoronary anastomoses,12–13 intercoronary collateral channels,14 intercoronary interarterial anastomoses,15 and interarterial anastomoses.16 Alternative terms for collateral vessels are the following: collateral anastomoses or homocoronary anastomoses12–13, coronary collateral vessels, collateral connections, or collateral channels12–15, and intra-arterial anastomoses.5

Collateral vessels were further differentiated into preexisting (or native) and mature collateral vessels in coronary collateral angiogenesis and flow studies.4,17 The native collateral network in the canine heart is predominantly epicardial in origin, although endocardial connections are known to exist.11,17,18 Schaper17 described these native vessels as small arterioles, averaging 40 µm in diameter, thin-walled, and having only 1 or 2 smooth muscle layers.

Compared with preexisting (or native) collateral vessels, mature collateral vessels have well-developed media, have much clearer evidence of vasomotion, have considerably more blood flow, and develop as a result from chronic or recurrent ischemia.14,15 The transformation of native collateral vessels into mature collateral vessels has been described as vascular remodeling or angiogenesis (ie, development of new vessels).18–20

The purpose of the study reported here was to find and investigate coronary collateral arteries and anastomoses in the canine heart by use of postmortem injection techniques and subsequent maceration of the vascular casts. This technique allows 3-dimensional models of the coronary arteries and their collateral vessels to be produced. For the purpose of our investiga-
tion on coronary vessels, the use of AR appeared to be as satisfactory as that of LVAR. Because we did not study the coronary capillary network (with a vessel diameter range of 5 to 70 µm), the use of AR was justified. Another reason that AR was used more often in our study than LVAR was because of the higher cost of LVAR.

Materials and Methods

Specimens—Hearts were used for postmortem vascular injections from 31 cadaver dogs of unknown age and weight. They included 13 mixed-breed dogs (7 female and 5 male), 7 Beagles (3 females and 4 males), 5 German Shepherd Dogs (3 females and 2 males), 2 Standard Poodles (1 female and 1 male), 2 Dobermans (1 female and 1 male), 1 male Bull Terrier, and 1 male Dachshund. Cadaver dogs had died of natural causes or had been euthanized prior to receiving them. No evidence or signs of heart disease were reported for any dogs.

Casting procedure—Hearts were quickly removed en bloc with the aorta and major vessels and were flushed and rinsed with physiologic saline (0.9% NaCl) solution and tap water until the fluid ran clear. Of the 31 hearts, 19 were perfused with AR and 12 were perfused with LVAR. Prior to injection of AR, the perfusate was mixed with a 2% catalyst solution (ie, benzoyl peroxide and dibutyl phthalate). In the case of LVAR, the resin-to-catalyst ratio in grams was 20:1.5, which allowed for a usable time of 2 to 3 minutes and a hardening time of 6 to 8 minutes. Because clear casts are macroscopically difficult to work with, Sudan red dye was added to the AR perfusate. The LVAR was a blue liquid, so the addition of dye was not required.

Injections were made under hand pressure into the aortic sinus via the ascending aorta. In 4 hearts, injections into the coronary sinus were performed to demonstrate the branching pattern and collateral vessels of the coronary veins. After a 24- to 48-hour period in a cool room at 8°C, the perfused hearts were macerated in a solution of 40% NaOH. Finally, the specimens were carefully irrigated with tap water for removal of soft tissue and then air-dried. The casts were examined macroscopically and with a headset at magnifications of 1.8X, 2.3X, 3.7X, and 4.8X. In addition, a stereomicroscope at 10X magnification was used to further investigate areas of special interest. Photomacographs were made and labeled. Measurements were done by use of a sliding caliper. Estimated shrinkage with the use of AR is between 12% and 15%, and estimated shrinkage with the use of LVAR is 8%.

Results

Collateral vessels—In 7 vascular cast specimens, collateral vessels were demonstrated. In the proximal portion of the septum of 2 specimens, a collateral vessel, measuring approximately 90 µm in diameter and located between a caudal interventricular septal branch and the circumflex branch (prior to its continuation as the caudal subsinuosal interventricular branch) of the LCA, was found. Because this interconnection is with-
in a territory of blood supply (i.e., that of the LCA), it is described as a collateral vessel. A similar finding was shown in another vascular cast where 2 branches originating from the interventricular septal branch of the LCA anastomosed near the proximal portion of the septum (Figure 1).

Another collateral connection (approx 100 µm in diameter) was found between the paracanal interventricular and submusosal interventricular branches of the LCA across the apex of 2 hearts (Figure 2). A collateral connection (approx 90 µm in diameter) was found between the left proximal collateral branch of the paracanal interventricular artery and the left proximal ventricular branch of the circumflex artery (Figure 3).

Collateral vessels (approx 85 µm in diameter) were also found among ascending atrial branches of the RCA. In 1 specimen, the right distal atrial branch anastomosed with the right proximal atrial branch, whereas in another heart, a collateral interconnection (approx 85 µm in diameter) was found between the right intermediate atrial branch and right proximal atrial branch of the RCA (Figure 4). A remarkable and novel finding was a collateral artery (approx 80 µm in diameter) between the right marginal ventricular branch and the right proximal atrial branch of the RCA (Figure 5). To our knowledge, a collateral vessel between a descending ventricular and ascending atrial branch of the RCA has not been described before. In total, 9 coronary collateral arteries and 3 interarterial anastomoses were found.

Figure 4—Right lateral photomicroscopic view of a corrosion cast of acrylic resin (AR)-injected coronary arteries in a heart from a female German Shepherd Dog. Notice the collateral connection (yellow arrows) between the right proximal atrial branch (1) and right intermediate atrial branch (2) of the right coronary artery (RCA).

Figure 5—Right lateral photomicroscopic view of a corrosion cast of AR-injected coronary arteries in a heart from a female Beagle. Notice the collateral artery (white and black arrows) between the right ventricular (descending) branch (2) and right proximal atrial branch (3) of the RCA.

Figure 6—Left lateral photomicrographic view of a corrosion cast of AR-injected coronary arteries in a heart from a female German Shepherd Dog. Notice the intercoronary anastomosis (white arrows) between a cranial branch of an interventricular septal branch (2) of the LCA and right distal ventricular branch (3) of the RCA (4). Notice the paracanal interventricular branch (1) of the LCA.

Figure 7—Drawing of the left lateral view of collateral arteries and anastomoses of the canine heart as found in the photomicrographs of Figures 1, 2, 3, and 6. Left lateral view. 1 = Aorta. 2 = LCA. 3 = Cranial paraconal interventricular branch of the LCA. 4 = Circumflex branch of the LCA. 5 = RCA. 6 = Interventricular septal branch of the LCA. 7 = Left proximal ventricular branch of the LCA.
Discussion

Despite a great deal of study, a consensus on the existence of end arteries in the coronary circulation of dogs has not been reached. The network distribution of large epicardial vessels, as described in our study of the heart of clinically normal dogs, has been known for many years. Yet, the functional importance of these vascular interconnections, which are between branches of the same artery and between branches of different arteries, is still questioned, and the physiologic term, end artery, is still used to characterize coronary vessels.

It would seem unreasonable to deny function to a system such as that of the anastomosing vessels of the canine and human heart. In particular, findings in recent coronary collateral blood flow and angiogenesis studies have demonstrated the existence and protective capacity of this system in the event of prolonged ischemic stimuli.

In our study, we did not examine blood flow following the ligation of coronary arteries because research investigating this issue has been extensive. Also, our main interest involved investigation of the morphologic and topographic characteristics of the various coronary branching patterns and collateral channels.

On postmortem examination, coronary collateral blood flow, resulting from peripheral coronary blood pressure and retrograde blood flow, might be high. Also on postmortem examination, collateral vessel dilatation could be potentially mediated by mechanical stretching caused by the filling pressure of the injected cast material.

The existence and finding of inter- as well as intracoronary collateral channels in 8 of our canine heart specimens are in agreement with findings in other anatomic studies. Our findings and those of recent coronary collateral blood flow studies and reperfusion studies on the ischemic canine heart strongly suggest that the canine coronary collateral circulation is functional and that the existence of end arteries in the coronary circulation of dogs is not likely. Findings in all of these studies indicate that the recruitment of native collateral vessels or collateral vessel remodeling and transformation into mature collateral arteries are stimulated by chronic vessel occlusion or recurrent ischemia.

Findings in studies an inadequate collateral circulation indicate that a protective effect or mechanism of coronary collateral vessel remodeling occurs in hearts of clinically normal individuals. In these studies, individuals with adequate collateral circulation had lower end-diastolic pressures, a higher cardiac output fraction, and improved left ventricular function, compared with individuals with inadequate collateral circulation. Similar findings were demonstrated in reperfusion studies in dogs in response to endothelial-dependent vasodilators, such as prostaglandins E1 and E2, adenosine, and epoxy-eicosatrienoic and dihydroxye-poxiyicosatrienoic acids, and in response to vascular endothelial growth factors, such as fibroblast growth factor and insulin growth factor. In conclusion, findings in our study support the existence of coronary collateral arteries as well as a mechanism for collateral vessel remodeling. The ability to improve left ventricular function in advanced myocardial dysfunction may be of clinical interest in the vasodilation treatment of dogs with heart disease.

a. Tensol cement No. 70, ICI Chemicals & Polymers Ltd, Wilton, Middlesborough, Cleveland, UK.

AJVR, Vol 66, No. 10, October 2005
References