Comparison of the carbon 13-labeled octanoic acid breath test and ultrasonography for assessment of gastric emptying of a semisolid meal in dogs

Jonathan McLellan, BVMS; Cathy A. Wyse, PhD; Alison Dickie, BVMS, MVM; Tom Preston, PhD; Philippa S. Yam, BVMS, PhD

Objective—To compare the rate of gastric emptying of a semisolid meal by use of the carbon 13-labeled octanoic acid breath test (13C-OBT) and gastric emptying ultrasonography (GEU) in dogs.

Animals—10 healthy dogs.

Procedure—Food was withheld from dogs for 12 hours before ingestion of a test meal (bread, egg, and skimmed milk) containing 13C-octanoic acid. The gastric antrum was visualized by use of a 6.5-MHz microconvex transducer, and the area of the ellipse defined by the craniocaudal and ventrodorsal diameters of the stomach was measured. Samples of expired air and antral images were obtained 30 minutes before ingestion of the test meal and then every 15 minutes for 4 hours and every 30 minutes for a further 2 hours. The half-dose recovery time with the 13C-OBT (t½[BT]) and the gastric half emptying time with GEU (t½[GEU]) was calculated.

Results—Mean ± SD values for the t½[BT] and t½[GEU] were 3.44 ± 0.48 hours and 1.89 ± 0.78 hours, respectively. A significant correlation was detected between the t½[BT] and t½[GEU], although there was a large (1.55 hours) mean difference between these indices.

Conclusions and Clinical Relevance—Results indicated that there was a correlation between the rate of solid-phase gastric emptying assessed by use of GEU and the 13C-OBT in dogs. Gastric emptying ultrasonography may be a useful, noninvasive method for assessment of the rate of solid-phase gastric emptying in dogs. (Am J Vet Res 2004;65:1557–1562)

Delayed solid-phase gastric emptying has been associated with many pathologic diseases in dogs, including hypertrophic pyloric gastropathy, gastric neoplasia, endotoxemia, and gastric dilatation-volvulus. Delayed gastric emptying may be associated with a number of clinical signs, such as vomiting, abdominal discomfort, and weight loss.

Solid-phase gastric emptying refers to the gastric emptying of solid food and is a function of the triturative or grinding actions of the stomach. Assessment of the rate of solid-phase gastric emptying in small animal clinical practice is mostly confined to radiographic imaging of the gastrointestinal transit of radiopaque markers. Radiographic methods provide semiquantitative data that are poorly representative of the gastric emptying of solid food. Imaging of the passage of a radiolabeled (technetium Tc 99m) test meal by use of a gamma camera (radioscintigraphy) is the standard method for assessing gastric emptying.8,9 However, this is not generally used in veterinary medicine. A comparative review of methods available for assessment of gastric emptying in dogs has been previously described.10

The consequences of delayed gastric emptying in clinical practice are poorly understood, primarily because of the absence of a suitable method for quantification of the rate of solid-phase gastric emptying in dogs. In human medicine, the carbon 13-labeled octanoic acid breath test (13C-OBT) and gastric emptying ultrasonography (GEU) are used as simple and noninvasive methods for assessment of solid-phase gastric emptying.11,12 Both methods have been correlated against the standard method of radioscintigraphy,11,13 and have been used to detect delayed gastric emptying in humans.14,15 Gastric emptying ultrasonography offers the advantage of permitting real-time (live) visualization of the antropyloric region and provides information on the pathogenesis of disordered gastric emptying (ie, the images of the stomach can be visualized at the time of study, rather than being a recording or there being a delay). The 13C-OBT and GEU have been applied in dogs16,17 and with further validation may become options for clinical investigation of the rate of solid-phase gastric emptying in dogs. The purpose of the study reported here was to compare the rate of gastric emptying of a semisolid meal by use of the 13C-OBT and GEU in dogs.
Materials and Methods

Dogs—Ten healthy dogs were used in this study. Body weight of dogs ranged from 18 to 36 kg. The study was approved by the Animal Ethics and Welfare Committee of the University of Glasgow.

Test meal—The test meal consisted of 1 slice of wholemeal bread (36 g; 980 kJ/100 g), 5 g of margarine (2,593 kJ/100 g), and 200 mL of skimmed milk (146 kJ/100 mL); total energy provided by the meal was approximately 775 kJ. Fifty milligrams of the 13C-octanoic acid substrate (octanoic acid-1-13C [a minimum of 99% of the carbon atoms are 13C]) was mixed with 1 egg yolk (octanoic acid is highly soluble in egg yolk), baked, and added to the test meal. This test meal was chosen because it has been previously described for use of the 13C-OBT in dogs.16

Gastric emptying ultrasonography—Ultrasonographic examinations were performed by the same sonographer with an ultrasound machine1 and a 6.5-MHz microconvex transducer. Each dog was gently restrained in the standing position, and the transducer was positioned in a longitudinal orientation on the ventral midline caudal to the xiphoid. The ultrasound beam was maintained in the sagittal plane and directed cranially until the liver was located and the stomach was identified immediately caudal to it. The stomach was observed by use of real-time imaging, which permitted the image to be frozen between peristaltic contractions when the stomach was at a constant, maximal distension. In intraluminal gas caused acoustic shadowing, which obscured the far wall, and the gas did not pass with subsequent gastric contractions, the stomach was assumed to be an oval shape permitting the ventr verdorsal measurement to be made. Antral area was calculated by use of software attached to the ultrasound machine to predict the area inside the elliptical shape that was defined by the craniocaudal and ventrodorsal diameters of the stomach. Measurements of antral area (cm²) were obtained in triplicate at each sample time, and the mean of the 3 measurements was used in further calculations. Baseline antral area was measured before ingestion of the test meal and subtracted from each subsequent measurement. All measurements were expressed as a percentage of the maximal antral area measured during each test and plotted against time. The gastric half-emptying time with GEU (t50%(GEU)) was defined as the time point at which antral area was < 50% of the maximal value.

13C-OBT—The 13C-OBT was performed according to a previously described method.16 Briefly, samples of expired air were collected before and after ingestion of the 13C-labeled test meal by permitting the dog to breathe through a plastic mask connected to a nonbreathing valve and a 50-mL reservoir bag. Expired air samples were transferred from the reservoir bag to sample tubes, and the ratio of 13CO2-to-12CO2 was measured by use of isotope-ratio mass spectrometry.

Results of 13C analyses were expressed as percentage dose recovered per hour (PDR) and calculated by use of the following equation:

\[
PDR/h = \frac{(\text{ppm excess }13C/10^6 \times V_{CO_2})/\text{mmol of }13C \text{ administered}}{t}
\]

where \(V_{CO_2}\) is mmol of \(CO_2\) exhaled per hour, which was considered to remain stable at 0.194 L/m²/min.18 Body surface area was calculated as the following: body surface area (m²) = 10.1 \times body weight (g)¹/³/10,000.²² The PDR per hour values were plotted against time, and nonlinear regression analysis was used to model the data according to the formula described by Ghoos et al.²³

\[
y = a + b e^{-ct}
\]

where \(y\) is the PDR per hour; \(t\) is time in hours; and \(a, b\) and \(c\) are variables predicted by the Solver function of a spreadsheet. This model was used to calculate the half-dose recovery time with the 13C-OBT (t½(BT)) defined as the time when the area under the fitted cumulative excretion curve (expressed as PDR per hour) equals half of the 13C dose recovered in expired air.

Study design—The 13C-OBT and GEU were performed simultaneously in each dog on 1 occasion. Food and water were withheld from dogs for 12 hours before ingestion of the test meal. Expired air samples and ultrasonographic images were acquired 30 minutes before and 5 minutes after ingestion of the test meal and then every 15 minutes for 4 hours and every 30 minutes for a further 2 hours.

Statistical analyses—All data analyses were performed by use of computer software. The association between the rate of gastric emptying assessed with the 13C-OBT and GEU was investigated by comparing t½(BT) and t50%(GEU) by calculation of a Pearson correlation coefficient (r). Concordance of the gastric emptying indices predicted with the 13C-OBT and GEU was assessed by use of the method of Bland and Altman.²⁴ The difference between t½(BT) and t50%(GEU) calculated for each dog was plotted against the mean difference between the 2 indices. Limits of agreement were plotted on the graph and defined as d ± 1.96s, where \(d\) is the mean difference between t½(BT) and t50%(GEU) and \(s\) is the SD of the differences.

If the data are normally distributed, 95% of the differences between the 2 methods will fall between the limits \(d ± 1.96s\) and \(d ± 1.96s\), thus defining the range containing most of the differences. Similarly, the repeatability of ultrasonographic measurement of antral area was assessed by plotting the difference between each of 3 consecutive measurements in each dog (n = 651) against their mean. Data are given as mean ± SD, and values of \(P < 0.05\) were considered significant.

Results

Both techniques (13C-OBT and GEU) were simple to perform and tolerated well by all dogs. In all dogs, the stomach was consistently imaged as an oval-shaped structure surrounded by echogenic mesenteric fat. The region being examined corresponded with the junction between the body of the stomach and the pyloric antrum. In preprandial images in which the stomach was empty, it was difficult to determine the location of the lumen and the rugal folds caused a bed- or feather-like appearance (Figure 1). Distension caused by gastric secretions permitted visualization of the lumen as a hyperechoic region, whereas, less commonly, gas in the lumen caused a distal acoustic shadow, which obscured the far wall of the stomach. Immediately after ingestion of the test meal, the gastric contents were extremely hyperechoic and caused marked shadowing that reflected the presence of gas bubbles within the ingesta. By 5 minutes after ingestion of the test meal, the contents assumed an echogenicity similar to that of gastric secretions and the lumen could be visualized because of distension of the stomach.

Repeatability of the ultrasonographic measurement of antral area at each time point was poor, as indicated by a wide spread of data outside of the range defined by the mean difference ± 1.96 SD, when mean replicate measurements (n = 651) were plotted against their difference (Figure 2). In our study, > 5% (29%) of the differences were outside of this range, although the mean difference was not different from zero.
The change in antral area and the 13C-excretion curve for each test were determined (Figure 3). Mean ± SD for $t_{\text{50\%}}(\text{BT})$ and $t_{\text{50\%}}(\text{GEU})$ was 3.44 ± 0.48 hours and 1.89 ± 0.78 hours, respectively. These data were plotted on a histogram and were normally distributed. Although there was a significant ($r = 0.68; P < 0.02$) correlation between $t_{\text{50\%}}(\text{BT})$ and $t_{\text{50\%}}(\text{GEU})$, there was a difference of 1.55 hours between the overall mean of $t_{\text{50\%}}(\text{BT})$ and $t_{\text{50\%}}(\text{GEU})$ (Figure 4). Results
The difference between \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) was the tying of a semisolid test meal using GEU and the \(^{13}C\)-OBT. The difference between \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) in 10 dogs. Two points on the graph overlap. The concordance of the results obtained by use of both methods was examined by plotting the data as described by Bland and Altman. The difference between \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) was assessed by gastric emptying ultrasonography (\(t_{50\%}(GEU) \)) and the \(^{13}C\)-OBT (\(t_{1/2}(BT) \)) in 10 dogs. Two points on the graph overlap. The concordance of the results obtained by use of both methods was examined by plotting the data as described by Bland and Altman. The difference between \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) was assessed by gastric emptying ultrasonography (\(t_{50\%}(GEU) \)) and the \(^{13}C\)-OBT (\(t_{1/2}(BT) \)) in 10 dogs. Two points on the graph overlap. The concordance of the results obtained by use of both methods was examined by plotting the data as described by Bland and Altman.

The data as described by Bland and Altman were examined in a standing position to permit gas to rise into the fundus and thus minimize interference with antral measurement. To the authors’ knowledge, repeatability of ultrasonographic measurements of antral area has not been reported in human or veterinary medicine. In the present study, measurement of antral area in dogs by use of ultrasonography was poorly repeatable and use of the mean of 3 replicate measurements of antral area at each time point was required.

The \(^{13}C\)-OBT is a simple and noninvasive method for assessment of gastric emptying that can be used in veterinary practice and does not require exposure to radiation. This test has been used in dogs and cats, and comprehensive studies have validated this test for assessment of gastric emptying in humans and horses. The \(^{13}C\)-OBT provides an index of the rate of gastric emptying as determined by retention of the \(^{13}C\)-substrate in the solid phase, rapid digestion and absorption in the duodenum, hepatic oxidation to \(^{13}CO_2 \), absorption in the bicarbonate pool, and finally excretion of \(^{13}CO_2 \) in expired air. The premise of the test is that intra- and interindividual variation in the rate of these processes remains small and that the rate of delivery of the \(^{13}C\)-substrate to the duodenum is the factor that regulates the production of \(^{13}CO_2 \) in expired air. Consequently, the \(^{13}C\)-OBT is accepted as an indirect measure of gastric emptying, and consistent with this is the documented agreement between the results of the \(^{13}C\)-OBT and other measures of gastric emptying, including the gold standards of radioscintigraphy and ultrasonography.

The rate of gastric emptying measured by use of ultrasonography relies on a linear association between the rate of gastric emptying and changes in antral area. The distal regions of the stomach are believed to be primarily responsible for trituration of solid food and emptying of particles into the duodenum, and it is likely that postcibal antral dilatation is related to the rate of solid-phase emptying. However, the rate of passage of ingesta from the proximal regions of the stomach and redistribution of ingesta within the stomach may also be important in regulating the postcibal antral area. This may affect the point of maximal antral dilatation, an important point in ultrasonographic assessment of gastric emptying, because all other data points are expressed as a ratio of the maximal antral dilata-

Discussion

To the authors’ knowledge, use of ultrasonography for assessment of solid-phase gastric emptying in dogs has not been previously reported, despite widespread use of this method in human medicine. Results of our study indicated that there was a significant cor-

Figure 4—Association between gastric half-emptying time as assessed by gastric emptying ultrasonography (\(t_{50\%}(GEU) \)) and the \(^{13}C\)-OBT (\(t_{1/2}(BT) \)) in 10 dogs. Two points on the graph overlap.

Figure 5—Bland-Altman plot illustrating the concordance between \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) in 10 dogs after assessment of gastric emptying of a semisolid test meal using GEU and the \(^{13}C\)-OBT. The difference between \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) is plotted against the mean value of \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) for each dog. The dotted lines represent the mean difference and 95% limits of agreement for \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) for all dogs. See Figure 3 for key.

The difference between \(t_{1/2}(BT) \) and \(t_{50\%}(GEU) \) was within the limits of agreement for all dogs, although a large mean difference between the methods (1.55 hours) was evident.

Section of Digestive System and Reproductive Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois 61801-2901.

The authors thank the veterinarians who allowed use of their patient records, the technicians who collected the data, and Barry H. L. Brown for his suggestions concerning the manuscript.
The point of maximal antral dilatation varied between dogs in this study. The physiologic importance of this point is unknown; however, it may be of some interest that maximal antral dilatation is delayed in human patients with functional dyspepsia. For example, the point of maximal antral dilatation may be of importance with other studies that compared the 13C-OBT with radiotracer techniques. For instance, the 13C-OBT may be influenced by bicarbonate kinetics, CO$_2$ production, and small intestinal function, whereas GEU may be affected by intraluminal redistribution of food in the stomach. A more important discordance between these methods is the fact that the 13C-OBT measures the rate of gastric emptying of solids (13C-octanoic acid in egg), whereas GEU measures the contribution of gastric secretion, ingested fluid and saliva, and duodenal reflux to the antral area. However, it is considered likely that the rate of gastric emptying of a test meal is the most influential factor regulating both the appearance of 13CO$_2$ in expired air and the change in antral area. Correlation between the 13C-OBT and GEU may then be expected, especially if the range of gastric emptying rates measured is large. Accordingly, a moderate significant association has been detected between the rate of gastric emptying measured by use of the 13C-OBT and GEU in dogs that can be easily used in veterinary practice. Results of the study reported here indicated that there was a moderate but significant association between the rate of gastric emptying of a semisolid test meal assessed by use of the 13C-OBT and GEU. This study was limited by a small sample size, and considerable variability was evident in the measurement of antral area by use of ultrasonography. Further studies are required to validate these methods as procedures facilitating quantitative assessment of the rate of solid-phase gastric emptying in clinical veterinary practice.

Dissimilar physiologic factors regulate the 13C-OBT and GEU, although both methods are considered to be reliable methods for assessment of gastric emptying. For example, the 13C-OBT may be influenced by bicarbonate kinetics, CO$_2$ production, and small intestinal function, whereas GEU may be affected by intraluminal redistribution of food in the stomach. A more important discordance between these methods is the fact that the 13C-OBT measures the rate of gastric emptying of solids (13C-octanoic acid in egg), whereas GEU measures the contribution of gastric secretion, ingested fluid and saliva, and duodenal reflux to the antral area. However, it is considered likely that the rate of gastric emptying of a test meal is the most influential factor regulating both the appearance of 13CO$_2$ in expired air and the change in antral area. Correlation between the 13C-OBT and GEU may then be expected, especially if the range of gastric emptying rates measured is large. Accordingly, a moderate significant association has been detected between the rate of gastric emptying measured by use of the 13C-OBT and GEU in dogs that can be easily used in veterinary practice. Results of the study reported here indicated that there was a moderate but significant association between the rate of gastric emptying of a semisolid test meal assessed by use of the 13C-OBT and GEU. This study was limited by a small sample size, and considerable variability was evident in the measurement of antral area by use of ultrasonography. Further studies are required to validate these methods as procedures facilitating quantitative assessment of the rate of solid-phase gastric emptying in clinical veterinary practice.

Different physiologic factors regulate the 13C-OBT and GEU, although both methods are considered to be reliable methods for assessment of gastric emptying. For example, the 13C-OBT may be influenced by bicarbonate kinetics, CO$_2$ production, and small intestinal function, whereas GEU may be affected by intraluminal redistribution of food in the stomach. A more important discordance between these methods is the fact that the 13C-OBT measures the rate of gastric emptying of solids (13C-octanoic acid in egg), whereas GEU measures the contribution of gastric secretion, ingested fluid and saliva, and duodenal reflux to the antral area. However, it is considered likely that the rate of gastric emptying of a test meal is the most influential factor regulating both the appearance of 13CO$_2$ in expired air and the change in antral area. Correlation between the 13C-OBT and GEU may then be expected, especially if the range of gastric emptying rates measured is large. Accordingly, a moderate significant association has been detected between the rate of gastric emptying measured by use of the 13C-OBT and GEU in dogs that can be easily used in veterinary practice. Results of the study reported here indicated that there was a moderate but significant association between the rate of gastric emptying of a semisolid test meal assessed by use of the 13C-OBT and GEU. This study was limited by a small sample size, and considerable variability was evident in the measurement of antral area by use of ultrasonography. Further studies are required to validate these methods as procedures facilitating quantitative assessment of the rate of solid-phase gastric emptying in clinical veterinary practice.
Correction: Effect of trilostane on serum concentrations of aldosterone, cortisol, and potassium in dogs with pituitary-dependent hyperadrenocorticism

In the article “Effect of trilostane on serum concentrations of aldosterone, cortisol, and potassium in dogs with pituitary-dependent hyperadrenocorticism,” published September 2004 (2004;65:1245–1250), the following items were incorrect.

On page 1247, the third line of the legend for Figure 2 incorrectly stated ACTH stimulation in 17 dogs with primary hyperadrenocorticism (PDH). The correct statement is ACTH stimulation in 17 dogs with pituitary-dependent hyperadrenocorticism (PDH).

On page 1247, the third sentence of the second paragraph in the second column incorrectly stated that throughout the study, serum aldosterone concentrations after ACTH stimulation remained significantly lower than the concentrations before ACTH stimulation. The correct statement is that throughout the study, serum aldosterone concentrations after ACTH stimulation remained significantly lower than the concentrations before ACTH stimulation prior to treatment.

On page, 1247, the end of the fourth sentence of the second paragraph in the second column incorrectly stated the time frame was weeks 1 to 4, respectively. The correct statement is for follow-up evaluations 1 to 4, respectively.