• 1.

    Döring D, Roscher A, Scheipl F, Küchenhoff H, Erhard MH. Fear-related behaviour of dogs in veterinary practice. Vet J. 2009;182(1):3843. doi:10.1016/j.tvjl.2008.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Csoltova E, Martineau M, Boissy A, Gilbert C. Behavioral and physiological reactions in dogs to a veterinary examination: owner-dog interactions improve canine well-being. Physiol Behav. 2017;177:270281. doi:10.1016/j.physbeh.2017.05.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Edwards PT, Smith BP, McArthur ML, Hazel SJ. Fearful Fido: investigating dog experience in the veterinary context in an effort to reduce distress. Appl Anim Behav Sci. 2019;2019(213):1425. doi:10.1016/j.applanim.2019.02.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Mariti C, Raspanti E, Zilocchi M, Carlone B, Gazzano A. The assessment of dog welfare in the waiting room of a veterinary clinic. Anim Welf. 2015;24(299):305. doi:10.7120/09627286.24.3.299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Stanford TL. Behavior of dogs entering a veterinary clinic. Appl Anim Ethol. 1981;7(3):271279. doi:10.1016/0304-3762(81)90083-3

  • 6.

    Bragg RF, Bennett JS, Cummings A, Quimby JM. Evaluation of the effects of hospital visit stress on physiologic variables in dogs. J Am Vet Med Assoc. 2015;246(2):212215. doi:10.2460/javma.246.2.212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Perego R, Proverbio D, Spada E. Increases in heart rate and serum cortisol concentrations in healthy dogs are positively correlated with an indoor waiting-room environment. Vet Clin Pathol. 2014;43(1):6771. doi:10.1111/vcp.12118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Rand JS, Kinnaird E, Baglioni A, Blackshaw J, Priest J. Acute stress hyperglycemia in cats is associated with struggling and increased concentrations of lactate and norepinephrine. J Vet Intern Med. 2002;16(2):123132. doi:10.1892/0891-6640(2002)016<0123:ashici>2.3.co;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Siracusa C, Manteca X, Cerón J, et al. Perioperative stress response in dogs undergoing elective surgery: variations in behavioural, neuroendocrine, immune and acute phase responses. Anim Welf. 2008;17(3):259273.

    • Search Google Scholar
    • Export Citation
  • 10.

    Travain T, Colombo ES, Heinzl E, Bellucci D, Previde EP, Valsecchi P. Hot dogs: thermography in the assessment of stress in dogs (Canis familiaris)—a pilot study. J Vet Behav Clin Appl Res. 2014;10(1):1723. doi:10.1016/j.jveb.2014.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    van Vonderen IK, Kooistra HS, Rijnberk A. Influence of veterinary care on the urinary corticoid: creatinine ratio in dogs. J Vet Intern Med. 1998;12(6):431435. doi:10.1111/j.1939-1676.1998.tb02146.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Quimby JM, Smith ML, Lunn KF. Evaluation of the effects of hospital visit stress on physiologic parameters in the cat. J Feline Med Surg. 2011;13(10):733737. doi:10.1016/j.jfms.2011.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mariti C, Bowen JE, Campa S, Grebe G, Sighieri C, Gazzano A. Guardians’ perceptions of cats’ welfare and behavior regarding visiting veterinary clinics. J Appl Anim Welf Sci. 2016;19(4):375384. doi:10.1080/10888705.2016.1173548

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Volk JO, Felsted KE, Thomas JG, Siren CW. Executive summary of the Bayer veterinary care usage study. J Am Vet Med Assoc. 2011;238(10):12751282. doi:10.2460/javma.238.10.1275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Moffat K. Addressing canine and feline aggression in the veterinary clinic. Vet Clin North Am Small Anim Pract. 2008;38(5):9831003. doi:10.1016/j.cvsm.2008.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Riemer S, Heritier C, Windschnurer I, Pratsch L, Arhant C, Affenzeller N. A review on mitigating fear and aggression in dogs and cats in a veterinary setting. Animals (Basel). 2021;11(1):158. doi:10.3390/ani11010158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Lloyd JKF. Minimising stress for patients in the veterinary hospital: why it is important and what can be done about it. Vet Sci. 2017;4(2):22. doi:10.3390/vetsci4020022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bowman A, Dowell FJ, Evans NP. The effect of different genres of music on the stress levels of kennelled dogs. Physiol Behav. 2017;171:207215. doi:10.1016/j.physbeh.2017.01.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bowman A, Scottish SPCA, Dowell FJ, Evans NP. ‘Four Seasons’ in an animal rescue centre; classical music reduces environmental stress in kennelled dogs. Physiol Behav. 2015;143:7082. doi:10.1016/j.physbeh.2015.02.035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mandese WW, Griffin FC, Reynolds PS, Blew AC, Deriberprey AS, Estrada AH. Stress in client-owned dogs related to clinical exam location: a randomised crossover trial. J Small Anim Pract. 2021;62(2):8288. doi:10.1111/jsap.13248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Engler WJ, Bain M. Effect of different types of classical music played at a veterinary hospital on dog behavior and owner satisfaction. J Am Vet Med Assoc. 2017;251(2):195200. doi:10.2460/javma.251.2.195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Stellato AC, Dewey CE, Widowski TM, Niel L. Evaluation of associations between owner presence and indicators of fear in dogs during routine veterinary examinations. J Am Vet Med Assoc. 2020;257(10):10311040. doi:10.2460/javma.2020.257.10.1031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Graham L, Wells DL, Hepper PG. The influence of olfactory stimulation on the behaviour of dogs housed in a rescue shelter. Appl Anim Behav Sci. 2005;91(1-2):143153. doi:10.1016/j.applanim.2004.08.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Mills DS, Ramos D, Estelles MG, Hargrave C. A triple blind placebo-controlled investigation into the assessment of the effect of dog appeasing pheromone (DAP) on anxiety related behaviour of problem dogs in the veterinary clinic. Appl Anim Behav Sci. 2006;98(1-2):114126. doi:10.1016/j.applanim.2005.08.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Gilbert-Gregory SE, Stull JW, Rice MR, Herron ME. Effects of trazodone on behavioral signs of stress in hospitalized dogs. J Am Vet Med Assoc. 2016;249(11):12811291. doi:10.2460/javma.249.11.1281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Stevens BJ, Frantz EM, Orlando JM, et al. Efficacy of a single dose of trazodone hydrochloride given to cats prior to veterinary visits to reduce signs of transport- and examination-related anxiety. J Am Vet Med Assoc. 2016;249(2):202207. doi:10.2460/javma.249.2.202

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kim SA, Borchardt MR, Lee K, Stelow EA, Bain MJ. Effects of trazodone on behavioral and physiological signs of stress in dogs during veterinary visits. Abstract in: Proceedings of the Veterinary Behavior Symposium. American College of Veterinary Behaviorists; 2020:13.

    • Search Google Scholar
    • Export Citation
  • 28.

    Hauser H, Campbell S, Korpivaara M, Stefanovski D, Quinlan M, Siracusa C. In-hospital administration of dexmedetomidine oromucosal gel for stress reduction in dogs during veterinary visits: a randomized, double-blinded, placebo-controlled study. J Vet Behav. 2020;39:7785. doi:10.1016/j.jveb.2020.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    van Haaften KA, Eichstadt Forsythe LR, Stelow EA, Bain MJ. Effects of a single preappointment dose of gabapentin on signs of stress in cats during transportation and veterinary examination. J Am Vet Med Assoc. 2017;251(10):11751181. doi:10.2460/javma.251.10.1175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopfensperger MJ, Messenger KM, Papich MG, Sherman BL. The use of oral transmucosal detomidine hydrochloride gel to facilitate handling in dogs. J Vet Behav. 2013;8(3):114123. doi:10.1016/j.jveb.2012.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Landsberg G, Hunthausen W, Ackerman L, Fatjó J. Pharmacologic intervention in behavioral therapy. In: Landsberg G, Hunthausen W, Ackerman L, eds. Behavior Problems of the Dog and Cat. 3rd ed. Elsevier Health Sciences; 2013:113138.

    • Search Google Scholar
    • Export Citation
  • 32.

    Overall K. Pharmacological approaches to changing behavior and neurochemistry: roles for diet, supplements, nutraceuticals, and medication. In: Overall K, ed. Manual of Clinical Behavioral Medicine for Dogs and Cats. Elsevier Health Sciences; 2013:458512.

    • Search Google Scholar
    • Export Citation
  • 33.

    Crowell-Davis SL, Landsberg G. Pharmacology and pheromone therapy. In: Horwitz D, Mills D, eds. BSAVA Manual of Canine and Feline Behavioural Medicine. BSAVA; 2009:245258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Mattos de Souza Dantas L, Crowell-Davis SL. Benzodiazepines. In: Crowell-Davis SL, Murray TF, Mattos de Souza Dantas L, eds. Veterinary Psychopharmacology. 2nd ed. John Wiley and Sons Ltd; 2019:67102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Izaute M, Bacon E. Specific effects of an amnesic drug: effect of lorazepam on study time allocation and on judgment of learning. Neuropsychopharmacology. 2005;30(1):196204. doi:10.1038/sj.npp.1300564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Ogata N, Mattos de Souza Dantas L. Sympatholytic agents. In: Crowell-Davis SL, Murray TF, Mattos de Souza Dantas L, eds. Veterinary Psychopharmacology. 2nd ed. John Wiley and Sons Ltd; 2019:157169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Mattos de Souza Dantas L, Crowell-Davis SL. Miscellaneous serotonergic agents. In: Crowell-Davis SL, Murray TF, Mattos de Souza Dantas L, eds. Veterinary Psychopharmacology. 2nd ed. John Wiley and Sons Ltd; 2019:129146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Aghighi SA, Tipold A, Piechotta M, Lewczuk P, Kästner SBR. Assessment of the effects of adjunctive gabapentin on postoperative pain after intervertebral disc surgery in dogs. Vet Anaesth Analg. 2012;39(6):636646. doi:10.1111/j.1467-2995.2012.00769.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Crociolli GC, Cassu RN, Barbero RC, Rocha TLA, Gomes DR, Nicácio GM. Gabapentin as an adjuvant for postoperative pain management in dogs undergoing mastectomy. J Vet Med Sci. 2015;77(8):10111015. doi:10.1292/jvms.14-0602

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Govendir M, Perkins M, Malik R. Improving seizure control in dogs with refractory epilepsy using gabapentin as an adjunctive agent. Aust Vet J. 2005;83(10):602608. doi:10.1111/j.1751-0813.2005.tb13269.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Platt SR, Adams V, Garosi LS, et al. Treatment with gabapentin of 11 dogs with refractory idiopathic epilepsy. Vet Rec. 2006;159(26):881884. doi:10.1136/vr.159.26.881

    • Search Google Scholar
    • Export Citation
  • 42.

    Cheng JK, Chiou LC. Mechanisms of the antinociceptive action of gabapentin. J Pharmacol Sci. 2006;100(5):471486. doi:10.1254/jphs.cr0050020

  • 43.

    Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res. 2013;36(3):237251. doi:10.1007/s12272-013-0057-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Ménigaux C, Adam F, Guignard B, Sessler DI, Chauvin M. Preoperative gabapentin decreases anxiety and improves early functional recovery from knee surgery. Anesth Analg. 2005;100(5):13941399. doi:10.1213/01.ANE.0000152010.74739.B8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Houghton KT, Forrest A, Awad A, et al. Biological rationale and potential clinical use of gabapentin and pregabalin in bipolar disorder, insomnia and anxiety: protocol for a systematic review and meta-analysis. BMJ Open. 2017;7(3):e013433. doi:10.1136/bmjopen-2016-013433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Greenblatt HK, Greenblatt DJ. Gabapentin and pregabalin for the treatment of anxiety disorders. Clin Pharmacol Drug Dev. 2018;7(3):228232. doi:10.1002/cpdd.446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Hudec CP, Griffin CE. Changes in the stress markers cortisol and glucose before and during intradermal testing in cats after single administration of pre-appointment gabapentin. J Feline Med Surg. 2020;22(2):138145. doi:10.1177/1098612X19830501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Pankratz KE, Ferris KK, Griffith EH, Sherman BL. Use of single-dose oral gabapentin to attenuate fear responses in cage-trap confined community cats: a double-blind, placebo-controlled field trial. J Feline Med Surg. 2018;20(6):535543. doi:10.1177/1098612X17719399

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Bleuer-Elsner S, Medam T, Masson S. Effects of a single oral dose of gabapentin on storm phobia in dogs: a double-blind, placebo-controlled crossover trial. Vet Rec. 2021;189(7):e453. doi:10.1002/vetr.453

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Crowell-Davis SL, Irimajiri M, Mattos de Souza Dantas L. Anticonvulsants and mood stabilizers. In: Crowell-Davis SL, Murray TF, Mattos de Souza Dantas L, eds. Veterinary Psychopharmacology. 2nd ed. John Wiley and Sons Ltd; 2019:147156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Vollmer KO, von Hodenberg A, Kölle EU. Pharmacokinetics and metabolism of gabapentin in rat, dog and man. Arzneimittelforschung. 1986;36(5):830839.

    • Search Google Scholar
    • Export Citation
  • 52.

    Radulovic LL, Türck D, von Hodenberg A, et al. Disposition of gabapentin (neurontin) in mice, rats, dogs, and monkeys. Drug Metab Dispos. 1995;23(4):441448.

    • Search Google Scholar
    • Export Citation
  • 53.

    Rhee YS, Park S, Lee TW, et al. In vitro/in vivo relationship of gabapentin from a sustained-release tablet formulation: a pharmacokinetic study in the Beagle dog. Arch Pharm Res. 2008;31(7):911917. doi:10.1007/s12272-001-1246-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    KuKanich B, Cohen RL. Pharmacokinetics of oral gabapentin in Greyhound dogs. Vet J. 2011;187(1):133135. doi:10.1016/j.tvjl.2009.09.022

  • 55.

    Trbolova A, Ghaffari MS, Capik I. Effects of premedication with oral gabapentin on intraocular pressure changes following tracheal intubation in clinically normal dogs. BMC Vet Res. 2017;13(1):288. doi:10.1186/s12917-017-1206-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Lind A-K, Hydbring-Sandberg E, Forkman B, Keeling LJ. Assessing stress in dogs during a visit to the veterinary clinic: correlations between dog behavior in standardized tests and assessments by veterinary staff and owners. J Vet Behav. 2017;17:2431. doi:10.1016/j.jveb.2016.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Rigterink A, Moore GE, Ogata N. Pilot study evaluating surface temperature in dogs with or without fear-based aggression. J Vet Behav. 2018;28:1116. doi:10.1016/j.jveb.2018.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Travain T, Colombo ES, Grandi LC, et al. How good is this food? A study on dogs’ emotional responses to a potentially pleasant event using infrared thermography. Physiol Behav. 2016;159:8087. doi:10.1016/j.physbeh.2016.03.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Siniscalchi M, Lusito R, Vallortigara G, Quaranta A. Seeing left- or right-asymmetric tail wagging produces different emotional responses in dogs. Curr Biol. 2013;23(22):22792282. doi:10.1016/j.cub.2013.09.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Beerda B, Schilder MBH, Van Hooff JARAM, De Vries HW, Mol JA. Behavioural, saliva cortisol and heart rate responses to different types of stimuli in dogs. Appl Anim Behav Sci. 1998;58(3-4):365381. doi:10.1016/S0168-1591(97)00145-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Kobelt AJ, Hemsworth PH, Barnett JL, Butler KL. Sources of sampling variation in saliva cortisol in dogs. Res Vet Sci. 2003;75(2):157161. doi:10.1016/s0034-5288(03)00080-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol. 2016;7(11):13251330. doi:10.1111/2041-210X.12584

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Albuquerque N, Guo K, Wilkinson A, Resende B, Mills DS. Mouth-licking by dogs as a response to emotional stimuli. Behav Processes. 2018;146:4245. doi:10.1016/j.beproc.2017.11.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Landsberg G, Hunthausen W, Ackerman L. Fears, phobias, and anxiety disorders. In: Landsberg G, Hunthausen W, Ackerman L, eds. Behavior Problems of the Dog and Cat. 3rd ed. Elsevier Health Sciences; 2013:181210.

    • Search Google Scholar
    • Export Citation
  • 65.

    Overall K. The science and theory underlying behavioral medicine: terminology, diagnosis, mechanism, and the importance of understanding reactivity. In: Overall K, ed. Manual of Clinical Behavioral Medicine for Dogs and Cats. Elsevier Health Sciences; 2013:4555.

    • Search Google Scholar
    • Export Citation
  • 66.

    Franzini de Souza CC, Martins Maccariello CE, Martins Dias DP, dos Santos Almeida NA, de Medeiros MA. Autonomic, endocrine and behavioural responses to thunder in laboratory and companion dogs. Physiol Behav. 2017;169:208215. doi:10.1016/j.physbeh.2016.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Franzini de Souza CC, Martins Dias DP, de Souza RN, de Medeiros MA. Use of behavioural and physiological responses for scoring sound sensitivity in dogs. PLoS One. 2018;13(8):e0200618. doi:10.1371/journal.pone.0200618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Stellato AC, Hoffman H, Gowland S, Dewey CE, Widowski TM, Niel L. Effect of high levels of background noise on dog responses to a routine physical examination in a veterinary setting. Appl Anim Behav Sci. 2019;214:6471. doi:10.1016/j.applanim.2019.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Tuber DS, Sanders S, Hennessy MB, Miller JA. Behavioral and glucocorticoid responses of adult domestic dogs (Canis familiaris) to companionship and social separation. J Comp Psychol. 1996;110(1):103108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Chmelíková E, Bolechová P, Chaloupková H, Svobodová I, Jovičić M, Sedmíková M. Salivary cortisol as a marker of acute stress in dogs: a review. Domest Anim Endocrinol. 2020;72:106428. doi:10.1016/j.domaniend.2019.106428

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement

Effects of a single dose of orally administered gabapentin in dogs during a veterinary visit: a double-blinded, placebo-controlled study

Ori O. Stollar DVM, MS1, George E. Moore DVM, DACVPM, DACVIM, PhD2, Abhijit Mukhopadhyay PhD1, Wilson Gwin BS Pharmacy1, and Niwako Ogata DVM, PhD, DACVB1
View More View Less
  • 1 Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
  • | 2 Department of Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN

Abstract

OBJECTIVE

To evaluate the effects of a single dose of orally administered gabapentin in alleviating stress at a veterinary visit in privately owned dogs.

Animals

22 healthy client-owned dogs (1.5 to 8.5 years old) were enrolled in this study.

PROCEDURES

Each dog received a 50-mg/kg oral dose of either gabapentin or placebo 2 hours before the beginning of each visit protocol. The dog’s behavioral responses were coded from recorded video clips during a 5-minute-long standardized physical examination and pre– and post–physical examination phases. The veterinary technician separately rated each greeting behavior at each visit. Physiological variables during veterinary visits (ie, eye surface temperature and salivary cortisol concentrations) were also compared between the pre– and post–physical examination phases. The owner was queried 24 hours after a visit to determine the incidence of adverse events.

RESULTS

The greeting test score, eye surface temperature, and cortisol concentrations did not differ substantially between the gabapentin and placebo treatment groups. Lip licking frequency during the physical examination phase was significantly lower in the gabapentin treatment group than in the placebo group (P = 0.001). Lip licking frequency during the pre– and post–physical examination phases was also significantly lower in the gabapentin treatment group than in the placebo treatment group (P = 0.004). No serious adverse events were reported by the owners following gabapentin treatment.

CLINICAL RELEVANCE

Results showed that the 50-mg/kg dose of gabapentin was well tolerated without serious adverse effects in healthy dogs. Further studies are recommended of dogs with documented stress in response to a veterinary visit.

Abstract

OBJECTIVE

To evaluate the effects of a single dose of orally administered gabapentin in alleviating stress at a veterinary visit in privately owned dogs.

Animals

22 healthy client-owned dogs (1.5 to 8.5 years old) were enrolled in this study.

PROCEDURES

Each dog received a 50-mg/kg oral dose of either gabapentin or placebo 2 hours before the beginning of each visit protocol. The dog’s behavioral responses were coded from recorded video clips during a 5-minute-long standardized physical examination and pre– and post–physical examination phases. The veterinary technician separately rated each greeting behavior at each visit. Physiological variables during veterinary visits (ie, eye surface temperature and salivary cortisol concentrations) were also compared between the pre– and post–physical examination phases. The owner was queried 24 hours after a visit to determine the incidence of adverse events.

RESULTS

The greeting test score, eye surface temperature, and cortisol concentrations did not differ substantially between the gabapentin and placebo treatment groups. Lip licking frequency during the physical examination phase was significantly lower in the gabapentin treatment group than in the placebo group (P = 0.001). Lip licking frequency during the pre– and post–physical examination phases was also significantly lower in the gabapentin treatment group than in the placebo treatment group (P = 0.004). No serious adverse events were reported by the owners following gabapentin treatment.

CLINICAL RELEVANCE

Results showed that the 50-mg/kg dose of gabapentin was well tolerated without serious adverse effects in healthy dogs. Further studies are recommended of dogs with documented stress in response to a veterinary visit.

Contributor Notes

Corresponding author: Dr. Ogata (nogata@purdue.edu)