Feline leukemia virus infection and diseases

Edward A. Hoover From the Department of Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 (Hoover), and the Department of Microbiology and Immunology, Sherman Fairchild Science Center, Stanford University Medical Center, Stanford, CA 94305-5402 (Mullins).

Search for other papers by Edward A. Hoover in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
and
James I. Mullins From the Department of Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 (Hoover), and the Department of Microbiology and Immunology, Sherman Fairchild Science Center, Stanford University Medical Center, Stanford, CA 94305-5402 (Mullins).

Search for other papers by James I. Mullins in
Current site
Google Scholar
PubMed
Close
 PhD

Summary

Feline leukemia virus is a naturally occurring, contagiously transmitted and oncogenic immunosuppressive retrovirus of cats. The effects of FeLV are paradoxical, causing cytoproliferative and cytosuppressive disease (eg, lymphoma and myeloproliferative disorders vs immunodeficiency and myelosuppressive disorders). In the first few weeks after virus exposure, interactions between FeLV and hemolymphatic system cells determine whether the virus or the cat will dominate in the host/virus relationship—persistent viremia and progressive infection or self limiting, regressive infection will develop. The outcome of these early host/virus interactions is revealed in the diagnostic assays for FeLV antigenemia and viremia. The latter, in turn, predict the outcome of FeLV infection in cats. Known host resistance factors include age and immune system functional status. Known virus virulence factors are magnitude of exposure and virus genotype. Molecular analysis of FeLV strains indicated that natural virus isolates exist as mixtures of closely related virus genotypes and that minor genetic variations among FeLV strains can impart major differences in pathogenicity. The genetic coding regions responsible for cell targeting and specific disease inducing capacity (eg, thymic lymphoma, acute immunosuppression, or aplastic anemia) have been mapped to the virus surface glycoprotein and/or long terminal repeat regions for several FeLV strains. Infection by specific FeLV strains leads to either malignant transformation or cytopathic deletion of specific lymphocyte and hemopoietic cell population, changes that prefigure the onset of clinical illness. Another notable feature of the biology of FeLV is that many cats are able to effectively contain and terminate viral replication, an important example of host immunologic control of a retrovirus infection and a process that can be selectively enhanced by vaccination. Thus, FeLV infection serves as a natural model of the multifaceted pathogenesis of retroviruses and as a paradigm for immunoprophylaxis against an immunosuppressive leukemogenic retrovirus.

Summary

Feline leukemia virus is a naturally occurring, contagiously transmitted and oncogenic immunosuppressive retrovirus of cats. The effects of FeLV are paradoxical, causing cytoproliferative and cytosuppressive disease (eg, lymphoma and myeloproliferative disorders vs immunodeficiency and myelosuppressive disorders). In the first few weeks after virus exposure, interactions between FeLV and hemolymphatic system cells determine whether the virus or the cat will dominate in the host/virus relationship—persistent viremia and progressive infection or self limiting, regressive infection will develop. The outcome of these early host/virus interactions is revealed in the diagnostic assays for FeLV antigenemia and viremia. The latter, in turn, predict the outcome of FeLV infection in cats. Known host resistance factors include age and immune system functional status. Known virus virulence factors are magnitude of exposure and virus genotype. Molecular analysis of FeLV strains indicated that natural virus isolates exist as mixtures of closely related virus genotypes and that minor genetic variations among FeLV strains can impart major differences in pathogenicity. The genetic coding regions responsible for cell targeting and specific disease inducing capacity (eg, thymic lymphoma, acute immunosuppression, or aplastic anemia) have been mapped to the virus surface glycoprotein and/or long terminal repeat regions for several FeLV strains. Infection by specific FeLV strains leads to either malignant transformation or cytopathic deletion of specific lymphocyte and hemopoietic cell population, changes that prefigure the onset of clinical illness. Another notable feature of the biology of FeLV is that many cats are able to effectively contain and terminate viral replication, an important example of host immunologic control of a retrovirus infection and a process that can be selectively enhanced by vaccination. Thus, FeLV infection serves as a natural model of the multifaceted pathogenesis of retroviruses and as a paradigm for immunoprophylaxis against an immunosuppressive leukemogenic retrovirus.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2522 1708 122
PDF Downloads 2429 1731 127
Advertisement