• View in gallery
    Figure 1

    Shared systemic effects of endocrine disease in the horse and human. Created with BioRender.com.

  • View in gallery
    Figure 2

    A combined approach to assessing phenotype in light of multiomic analyses (genomics, metabolomics, transcriptomics, proteomics, and microbiomics) to understand the effects of endocrine disorders on performance. Created with BioRender.com.

  • 1.

    Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356359.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Zhuo Q, Yang W, Chen J, Wang Y. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8(12):729737. doi:10.1038/nrrheum.2012.135

  • 3.

    Monira Hussain S, Wang Y, Cicuttini FM, et al. Incidence of total knee and hip replacement for osteoarthritis in relation to the metabolic syndrome and its components: a prospective cohort study. Semin Arthritis Rheum. 2014;43(4):429436. doi:10.1016/j.semarthrit.2013.07.013

    • Search Google Scholar
    • Export Citation
  • 4.

    Morgan R, Keen J, McGowan C. Equine metabolic syndrome. Vet Rec. 2015;177(7):173179. doi:10.1136/vr.103226

  • 5.

    Hofberger S, Gauff F, Licka T. Suspensory ligament degeneration associated with pituitary pars intermedia dysfunction in horses. Vet J. 2015;203(3):348350. doi:10.1016/j.tvjl.2014.12.037

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Banse HE, Whitehead AE, McFarlane D, Chelikani PK. Markers of muscle atrophy and impact of treatment with pergolide in horses with pituitary pars intermedia dysfunction and muscle atrophy. Domest Anim Endocrinol. 2021;76:106620. doi:10.1016/j.domaniend.2021.106620

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Geor R, Frank N. Metabolic syndrome-From human organ disease to laminar failure in equids. Vet Immunol Immunopathol. 2009;129(3–4):151154. doi:10.1016/j.vetimm.2008.11.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Frank N, Geor RJ, Bailey SR, Durham AE, Johnson PJ. Equine metabolic syndrome. J Vet Intern Med. 2010;24(3):467475. doi:10.1111/j.1939-1676.2010.0503.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Robles M, Nouveau E, Gautier C, et al. Maternal obesity increases insulin resistance, low-grade inflammation and osteochondrosis lesions in foals and yearlings until 18 months of age. PLoS One. 2018;13(1):e0190309. doi:10.1371/journal.pone.0190309

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Heliczer N, Gerber V, Bruckmaier R, van der Kolk JH, de Solis CN. Cardiovascular findings in ponies with equine metabolic syndrome. J Am Vet Med Assoc.2017;250(9):10271035. doi:10.2460/javma.250.9.1027

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    D’Fonseca NMM, Beukers, M, Wijnberg ID, et al. Effect of a long-term high-energy diet on cardiovascular parameters in Shetland pony mares. J Vet Intern Med. 2021;35(5):24272436. doi:10.1111/jvim.16229

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sessions-Bresnahan DR, Carnevale EM. The effect of equine metabolic syndrome on the ovarian follicular environment. J Anim Sci. 2014;92(4):14851494. doi:10.2527/jas.2013-7275

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Durham AE, Frank N, McGowan CM, et al. ECEIM consensus statement on equine metabolic syndrome. J Vet Intern Med. 2019;33(2):335349. doi:10.1111/jvim.15423

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26(2):1939.

  • 15.

    Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015;58(2):221232. doi:10.1007/s00125-014-3451-1

  • 16.

    McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL. GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab. 2011;104(4):648653. doi:10.1016/j.ymgme.2011.08.026

    • Search Google Scholar
    • Export Citation
  • 17.

    Bratanova-Tochkova TK, Cheng H, Daniel S, et al. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes. 2002;51(suppl 1):S83S90. doi:10.2337/diabetes.51.2007.s83

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pratt SE, Geor RJ, McCutcheon LJ. Repeatability of 2 methods for assessment of insulin sensitivity and glucose dynamics in horses. J Vet Intern Med. 2005;19(6):883888.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Toth F, Frank N, Elliott SB, Perdue K, Geor RJ, Boston RC. Optimisation of the frequently sampled intravenous glucose tolerance test to reduce urinary glucose spilling in horses. Equine Vet J. 2009;41(9):844851. doi:10.2746/042516409x439661

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Czech MP, Buxton JM. Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes. J Biol Chem. 1993;268(13):91879190.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    de Graaf-Roelfsema E. Glucose homeostasis and the enteroinsular axis in the horse: a possible role in equine metabolic syndrome. Vet J. 2014;199(1):1118. doi:10.1016/j.tvjl.2013.09.064

    • Search Google Scholar
    • Export Citation
  • 22.

    Polonsky KS, Given BD, Hirsch L, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81(2):435441. doi:10.1172/jci113338

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tóth F, Frank N, Martin-Jiménez T, Elliott SB, Geor RJ, Boston RC. Measurement of C-peptide concentrations and responses to somatostatin, glucose infusion, and insulin resistance in horses. Equine Vet J. 2010;42(2):149155. doi:10.2746/042516409x478497

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Faber OK, Christensen K, Kehlet H, Madsbad S, Binder C. Decreased insulin removal contributes to hyperinsulinemia in obesity. J Clin Endocrinol Metab. 1981;53(3):618621. doi:10.1210/jcem-53-3-618

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bamford NJ, Baskerville CL, Harris PA, Bailey SR. Postprandial glucose, insulin, and glucagon-like peptide-1 responses of different equine breeds adapted to meals containing micronized maize. J Anim Sci. 2015;93(7):33773383. doi:10.2527/jas.2014-8736

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fitzgerald DM, Walsh DM, Sillence MN, Pollitt CC, de Laat MA. Insulin and incretin responses to grazing in insulin-dysregulated and healthy ponies. J Vet Intern Med. 2019;33(1):225232. doi:10.1111/jvim.15363

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Frank N, Walsh DM. Repeatability of oral sugar test results, glucagon-like peptide-1 measurements, and serum high-molecular-weight adiponectin concentrations in horses. J Vet Intern Med. 2017;31(4):11781187. doi:10.1111/jvim.14725

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes–state-of-the-art. Mol Metab. 2021;46:101102. doi:10.1016/j.molmet.2020.101102

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Stefanovski D, Robinson MA, Van Eps A. Effect of a GLP-1 mimetic on the insulin response to oral sugar testing in horses. BMC Vet Res. 2022;18(1):294. doi:10.1186/s12917-022-03394-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Manfredi JM, Stapley ED, Nadeau JA, Nash D. Investigation of the effects of a dietary supplement on insulin and adipokine concentrations in equine metabolic syndrome/insulin dysregulation. J Equine Vet Sci. 2020;88:102930. doi:10.1016/j.jevs.2020.102930

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Durham AE. Therapeutics for equine endocrine disorders. Vet Clin North Am Equine Pract. 2017;33(1):127139. doi:10.1016/j.cveq.2016.11.003

  • 32.

    Ericsson AC, Johnson PJ, Gieche LM, et al. The influence of diet change and oral metformin on blood glucose regulation and the fecal microbiota of healthy horses. Animals (Basel). 2021;11(4):976. doi:10.3390/ani11040976

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hustace JL, Firshman AM, Mata JE. Pharmacokinetics and bioavailability of metformin in horses. Am J Vet Res. 2009;70(5):665668. doi:10.2460/ajvr.70.5.665

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rendle DI, Rutledge F, Hughes KJ, Heller J, Durham AE. Effects of metformin hydrochloride on blood glucose and insulin responses to oral dextrose in horses. Equine Vet J. 2013;45(6):751754. doi:10.1111/evj.12068

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Tinworth KD, Boston RC, Harris PA, Sillence MN, Raidal SL, Noble GK. The effect of oral metformin on insulin sensitivity in insulin-resistant ponies. Vet J. 2012;191(1):7984. doi:10.1016/j.tvjl.2011.01.015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Frank N, Elliott SB, Boston RC. Effects of long-term oral administration of levothyroxine sodium on glucose dynamics in healthy adult horses. Am J Vet Res. 2008;69(1):7681. doi:10.2460/ajvr.69.1.76

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Geor RJ, Harris P. Dietary management of obesity and insulin resistance: countering risk for laminitis. Vet Clin North Am Equine Pract. 2009;25(1):5165. doi:10.1016/j.cveq.2009.02.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Gong IY, Atzema CL, Lega IC, et al. Levothyroxine dose and risk of atrial fibrillation: a nested case-control study. Am Heart J. 2021;232:4756. doi:10.1016/j.ahj.2020.09.016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Kritchevsky J, Olave C, Tinkler S, et al. A randomised, controlled trial to determine the effect of levothyroxine on Standardbred racehorses. Equine Vet J. 2022;54(3):584591. doi:10.1111/evj.13480

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Delahanty LM, Pan Q, Jablonski KA, et al. Genetic predictors of weight loss and weight regain after intensive lifestyle modification, metformin treatment, or standard care in the Diabetes Prevention Program. Diabetes Care. 2012;35(2):363366. doi:10.2337/dc11-1328

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Brasnyo P, Molnar GA, Mohas M, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr. 2011;106(3):383389. doi:10.1017/s0007114511000316

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kellon EM, Gustafson KM. Use of the SGLT2 inhibitor canagliflozin for control of refractory equine hyperinsulinemia and laminitis. Open Vet J. 2022;12(4):511518. doi:10.5455/OVJ.2022.v12.i4.14

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sundra T, Kelty E, Rendle D. Preliminary observations on the use of ertugliflozin in the management of hyperinsulinemia and laminitis in 51 horses: a case series. Equine Vet Educ. 2022;00:110. doi:10.1111/eve.13738

    • Search Google Scholar
    • Export Citation
  • 44.

    Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:117. doi:10.1007/978-3-319-48382-5_1

  • 45.

    Perseghin G. Muscle lipid metabolism in the metabolic syndrome. Curr Opin Lipidol. 2005;16(4):416420. doi:10.1097/01.mol.0000174401.07056.56

  • 46.

    Arner P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab Res Rev. 2002;18(suppl 2):S5S9. doi:10.1002/dmrr.254

  • 47.

    Treiber KH, Kronfeld DS, Hess TM, Byrd BM, Splan RK, Staniar WB. Evaluation of genetic and metabolic predispositions and nutritional risk factors for pasture-associated laminitis in ponies. J Am Vet Med Assoc. 2006;228(10):15381545. doi:10.2460/javma.228.10.1538

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Carter RA, Treiber KH, Geor RJ, Douglass L, Harris PA. Prediction of incipient pasture-associated laminitis from hyperinsulinaemia, hyperleptinaemia and generalised and localised obesity in a cohort of ponies. Equine Vet J. 2009;41(2):171178.

    • Search Google Scholar
    • Export Citation
  • 49.

    Bailey SR, Habershon-Butcher JL, Ransom KJ, Elliott J, Menzies-Gow NJ. Hypertension and insulin resistance in a mixed-breed population of ponies predisposed to laminitis. Am J Vet Res. 2008;69(1):122129. doi:10.2460/ajvr.69.1.122

    • Search Google Scholar
    • Export Citation
  • 50.

    Frank N, Elliott SB, Brandt LE, Keisler DH. Physical characteristics, blood hormone concentrations, and plasma lipid concentrations in obese horses with insulin resistance. J Am Vet Med Assoc. 2006;228(9):13831390. doi:10.2460/javma.228.9.1383

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Coleman MC, Walzem RL, Kieffer AJ, Minamoto T, Suchodolski J, Cohen ND. Novel lipoprotein density profiling in laminitic, obese, and healthy horses. Domest Anim Endocrinol. 2019;68:9299. doi:10.1016/j.domaniend.2018.11.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48(6):12531262. doi:10.1194/jlr.R700005-JLR200

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):23472355. doi:10.1194/jlr.M500294-JLR200

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest. 2019;42(11):12571272. doi:10.1007/s40618-019-01052-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Arner E, Westermark PO, Spalding KL, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59(1):105109. doi:10.2337/db09-0942

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    De Lucia Rolfe E, Ong KK, Sleigh A, Dunger DB, Norris SA. Abdominal fat depots associated with insulin resistance and metabolic syndrome risk factors in black African young adults. BMC Public Health. 2015;15:1013. doi:10.1186/s12889-015-2147-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol. 2018;40(2):215224. doi:10.1007/s00281-017-0666-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Henninger AM, Eliasson B, Jenndahl LE, Hammarstedt A. Adipocyte hypertrophy, inflammation and fibrosis characterize subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes. PLoS One. 2014;9(8):e105262. doi:10.1371/journal.pone.0105262

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Basinska K, Marycz K, Sieszek A, Nicpon J. The production and distribution of IL-6 and TNF-a in subcutaneous adipose tissue and their correlation with serum concentrations in Welsh ponies with equine metabolic syndrome. J Vet Sci. 2015;16(1):113120. doi:10.4142/jvs.2015.16.1.113

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Reynolds A, Keen JA, Fordham T, Morgan RA. Adipose tissue dysfunction in obese horses with equine metabolic syndrome. Equine Vet J. 2019;51(6):760766. doi:10.1111/evj.13097

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets. 2007;6(3):168173. doi:10.2174/187152807781696464

  • 62.

    Marycz K, Szłapka-Kosarzewska J, Geburek F, Kornicka-Garbowska K. Systemic administration of rejuvenated adipose-derived mesenchymal stem cells improves liver metabolism in equine metabolic syndrome (EMS)–new approach in veterinary regenerative medicine. Stem Cell Rev Rep. 2019;15(6):842850. doi:10.1007/s12015-019-09913-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Bruynsteen L, Erkens T, Peelman LJ, et al. Expression of inflammation-related genes is associated with adipose tissue location in horses. BMC Vet Res. 2013;9(1):240. doi:10.1186/1746-6148-9-240

    • Search Google Scholar
    • Export Citation
  • 64.

    Burns TA, Geor RJ, Mudge MC, McCutcheon LJ, Hinchcliff KW, Belknap JK. Proinflammatory cytokine and chemokine gene expression profiles in subcutaneous and visceral adipose tissue depots of insulin-resistant and insulin-sensitive light breed horses. J Vet Intern Med. 2010;24(4):932939. doi:10.1111/j.1939-1676.2010.0551.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Waller AP, Huettner L, Kohler K, Lacombe VA. Novel link between inflammation and impaired glucose transport during equine insulin resistance. Vet Immunol Immunopathol. 2012;149(3–4):208215. doi:10.1016/j.vetimm.2012.07.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Suagee JK, Corl BA, Crisman MV, Pleasant RS, Thatcher CD, Geor RJ. Relationships between body condition score and plasma inflammatory cytokines, insulin, and lipids in a mixed population of light-breed horses. J Vet Intern Med. 2013;27(1):157163. doi:10.1111/jvim.12021

    • Search Google Scholar
    • Export Citation
  • 67.

    Holbrook TC, Tipton T, McFarlane D. Neutrophil and cytokine dysregulation in hyperinsulinemic obese horses. Vet Immunol Immunopathol. 2012;145(1–2):283289. doi:10.1016/j.vetimm.2011.11.013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Zak A, Siwinska N, Elzinga S, et al. Effects of equine metabolic syndrome on inflammation and acute-phase markers in horses. Domest Anim Endocrinol. 2020;72:106448. doi:10.1016/j.domaniend.2020.106448

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Treiber K, Carter R, Gay L, Williams C, Geor R. Inflammatory and redox status of ponies with a history of pasture-associated laminitis. Vet Immunol Immunopathol. 2009;129(3–4):216220. doi:10.1016/j.vetimm.2008.11.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Vick MM, Adams AA, Murphy BA, et al. Relationships among inflammatory cytokines, obesity, and insulin sensitivity in the horse. J Anim Sci. 2007;85(5):11441155. doi:10.2527/jas.2006-673

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Elzinga SE, Rohleder B, Schanbacher B, McQuerry K, Barker VD, Adams AA. Metabolic and inflammatory responses to the common sweetener stevioside and a glycemic challenge in horses with equine metabolic syndrome. Domest Anim Endocrinol. 2017;60:18. doi:10.1016/j.domaniend.2017.01.001

    • Search Google Scholar
    • Export Citation
  • 72.

    Dong J, Dong Y, Chen F, Mitch WE, Zhang L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes (Lond). 2016;40(3):434442. doi:10.1038/ijo.2015.200

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Cleasby ME, Jarmin S, Eilers W, et al. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal. Am J Physiol Endocrinol Metab. 2014;306(7):E814E823. doi:10.1152/ajpendo.00586.2013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Hill EW, Gu J, Eivers SS, et al. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One. 2010;5(1):e8645. doi:10.1371/journal.pone.0008645

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Baron EE, Lopes MS, Mendonca D, da Camara Machado A. SNP identification and polymorphism analysis in exon 2 of the horse myostatin gene. Anim Genet. 2012;43(2):229232. doi:10.1111/j.1365-2052.2011.02229.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Petersen JL, Valberg SJ, Mickelson JR, McCue ME. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Anim Genet. 2014;5(6):827835. doi:10.1111/age.12205

    • Search Google Scholar
    • Export Citation
  • 77.

    Takahashi H, Sato K, Yamaguchi T, et al. Myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese shorthorn cattle. Domest Anim Endocrinol. 2014;48:6268. doi:10.1016/j.domaniend.2014.01.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Frank N, Tadros EM. Insulin dysregulation. Equine Vet J. 2014;46(1):103112. doi:10.1111/evj.12169

  • 79.

    Schuver A. Frank N, Chameroy KA, Elliot SB. Assessment of insulin and glucose dynamics by using an oral sugar test in horses. J Equine Vet Sci. 2014;34(4):465470. doi:10.1016/j.jevs.2013.09.006

    • Search Google Scholar
    • Export Citation
  • 80.

    Geor RJ. Current concepts on the pathophysiology of pasture-associated laminitis. Vet Clin North Am Equine Pract. 2010;26(2):26576. doi:10.1016/j.cveq.2010.06.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Carter RA, McCutcheon LJ, Valle E, Meilahn EN, Geor RJ. Effects of exercise training on adiposity, insulin sensitivity, and plasma hormone and lipid concentrations in overweight or obese, insulin-resistant horses. Am J Vet Res. 2010;71(3):314321. doi:10.2460/ajvr.71.3.314

    • Search Google Scholar
    • Export Citation
  • 82.

    Bamford NJ, Potter SJ, Baskerville CL, Harris PA, Bailey SR. Effect of increased adiposity on insulin sensitivity and adipokine concentrations in different equine breeds adapted to cereal-rich or fat-rich meals. Vet J. 2016;214:1420. doi:10.1016/j.tvjl.2016.02.002

    • Search Google Scholar
    • Export Citation
  • 83.

    Yadav A, Kataria MA, Saini V. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:8084. doi:10.1016/j.cca.2012.12.007

  • 84.

    Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 2010;1212:E1E19. doi:10.1111/j.1749-6632.2010.05875.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Menzies-Gow NJ, Harris PA, Elliott J. Prospective cohort study evaluating risk factors for the development of pasture-associated laminitis in the United Kingdom. Equine Vet J. 2016;49(3):300306. doi:10.1111/evj.12606

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Rivero JL, van Breda E, Rogers CW, Lindner A, van Oldruitenborgh-Oosterbaan MM. Unexplained underperformance syndrome in sport horses: classification, potential causes and recognition. Equine Vet J. 2008;40(6):611618. doi:10.2746/042516408x299118

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Cadegiani FA, Kater CE. Hypothalamic-pituitary-adrenal (HPA) axis functioning in overtraining syndrome: findings from endocrine and metabolic responses on overtraining syndrome (EROS)-EROS-HPA axis. Sports Med Open. 2017;3(1):45. doi:10.1186/s40798-017-0113-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    de Graaf-Roelfsema E, Keizer HA, van Breda E, Wijnberg ID, van der Kolk JH. Hormonal responses to acute exercise, training and overtraining. A review with emphasis on the horse. Vet Q. 2007;29(3):82101. doi:10.1080/01652176.2007.9695232

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol. 2020;35:101480. doi:10.1016/j.redox.2020.101480

  • 90.

    Cadegiani FA, Kater CE. Hormonal aspects of overtraining syndrome: a systematic review. BMC Sports Sci Med Rehabil. 2017;9:14. doi:10.1186/s13102-017-0079-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Collins KH, Herzog W, MacDonald GZ, et al. Obesity, metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol. 2018;9:112. doi:10.3389/fphys.2018.00112

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Banse HE, Holbrook TC, Frank N, McFarlane D. Relationship of skeletal muscle inflammation with obesity and obesity-associated hyperinsulinemia in horses. Can J Vet Res. 2016;80(3):217224.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Stubbs NC, Kaiser LJ, Hauptman J, Clayton HM. Dynamic mobilisation exercises increase cross sectional area of musculus multifidus. Equine Vet J. 2011;43(5):522529. doi:10.1111/j.2042-3306.2010.00322.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Nagy A, Murray JK, Dyson S. Elimination from elite endurance rides in nine countries: a preliminary study. Equine Vet J Suppl. 2010;(38):637643. doi:10.1111/j.2042-3306.2010.00220.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Jansson A, Gunnarsson V, Ringmark S, et al. Increased body fat content in horses alters metabolic and physiological exercise response, decreases performance, and increases locomotion asymmetry. Physiol Rep. 2021;9(11):e14824. doi:10.14814/phy2.14824

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Horsak B, Schwab C, Baca A, et al. Effects of a lower extremity exercise program on gait biomechanics and clinical outcomes in children and adolescents with obesity: a randomized controlled trial. Gait Posture. 2019;70:122129. doi:10.1016/j.gaitpost.2019.02.032

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Shultz SP, D’Hondt E, Fink PW, Lenoir M, Hills AP. The effects of pediatric obesity on dynamic joint malalignment during gait. Clin Biomech (Bristol, Avon). 2014;29(7):835838. doi:10.1016/j.clinbiomech.2014.05.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Li JS, Tsai TY, Clancy MM, Li G, Lewis CL, Felson DT. Weight loss changed gait kinematics in individuals with obesity and knee pain. Gait Posture. 2019;68:461465. doi:10.1016/j.gaitpost.2018.12.031

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    de Oliveira Máximo R, de Oliveira DC, Ramírez PC, et al. Dynapenia, abdominal obesity or both: which accelerates the gait speed decline most? Age Ageing. 2021;50(5):16161625. doi:10.1093/ageing/afab093

    • Search Google Scholar
    • Export Citation
  • 100.

    Sanchez-Santos MT, Judge A, Gulati M, et al. Association of metabolic syndrome with knee and hand osteoarthritis: a community-based study of women. Semin Arthritis Rheum. 2019;48(5):791798. doi:10.1016/j.semarthrit.2018.07.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Valdes AM. Metabolic syndrome and osteoarthritis pain: common molecular mechanisms and potential therapeutic implications. Osteoarthritis Cartilage. 2020;28(1):79. doi:10.1016/j.joca.2019.06.015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Abate M, Schiavone C, Salini V, Andia I. Occurrence of tendon pathologies in metabolic disorders. Rheumatology (Oxford). 2013;52(4):599608. doi:10.1093/rheumatology/kes395

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Oliva F, Marsilio E, Asparago G, et al. Achilles tendon rupture and dysmetabolic diseases: a multicentric, epidemiologic study. J Clin Med. 2022;11(13):3698. doi:10.3390/jcm11133698

    • Search Google Scholar
    • Export Citation
  • 104.

    Bay-Jensen AC, Slagboom E, Chen-An P, et al. Role of hormones in cartilage and joint metabolism: understanding an unhealthy metabolic phenotype in osteoarthritis. Menopause. 2012;20(5):578586. doi:10.1097/gme.0b013e3182745993

    • Search Google Scholar
    • Export Citation
  • 105.

    Jiang H, Pu Y, Li ZH, et al. Adiponectin, may be a potential protective factor for obesity-related osteoarthritis. Diabetes Metab Syndr Obes. 2022;15:13051319. doi:10.2147/dmso.s359330

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Liu B, Gao YH, Dong N, et al. Differential expression of adipokines in the synovium and infrapatellar fat pad of osteoarthritis patients with and without metabolic syndrome. Connect Tissue Res. 2019;60(6):611618. doi:10.1080/03008207.2019.1620221

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Schett G, Kleyer A, Perricone C, et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care. 2013;36(2):403409. doi:10.2337/dc12-0924

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Xie C, Chen Q. Adipokines: new therapeutic target for osteoarthritis? Curr Rheumatol Rep. 7 2019;21(12):71. doi:10.1007/s11926-019-0868-z

  • 109.

    Boyce M, Trumble TN, Groschen DM, Merritt KA, Brown MP. Collagen biomarker response to acute joint injury in a non-terminal model of osteoarthritis. 2011.

  • 110.

    Boyce M, Trumble TN, Carlson CS, Groschen DM, Merritt KA, Brown MP. Non-terminal model of acute joint injury causes early osteoarthritis. Osteoarthritis and Cartilage. 2013;21(5):746755. doi:10.1016/j.oca.2013.02.653

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Trumble TN, Groschen DM, Ha N, Boyce M, Merritt KA, Brown MP. New urine biomarker assay compares to synovial fluid changes after acute joint injury in an equine model of osteoarthritis. Osteoarthritis Cartilage. 2012;20(suppl 1):S91.

    • Search Google Scholar
    • Export Citation
  • 112.

    Le TK, Montejano LB, Cao Z, Zhao Y, Ang D. Health care costs in US patients with and without a diagnosis of osteoarthritis. J Pain Res. 2012;5:2330. doi:10.2147/jpr.s27275

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Ray A, Ray BK. An inflammation-responsive transcription factor in the pathophysiology of osteoarthritis. Biorheology. 2008;45(3–4):399409. doi:10.3233/BIR-2008-0500

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Watts AE, Dabareiner R, Marsh C, Carter GK, Cummings KJ. A randomized, controlled trial of the effects of resveratrol administration in performance horses with lameness localized to the distal tarsal joints. J Am Vet Med Assoc. 2016;249(6):650659. doi:10.2460/javma.249.6.650

    • Search Google Scholar
    • Export Citation
  • 115.

    Zhou Q, Wang Y, Han X, Fu S, Zhu C, Chen Q. Efficacy of resveratrol supplementation on glucose and lipid metabolism: a meta-analysis and systematic review. Front Physiol. 2022;13:795980. doi:10.3389/fphys.2022.795980

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Chaplin A, Carpéné C, Mercader J. Resveratrol, metabolic syndrome, and gut microbiota. Nutrients. 2018;10(11):1651. doi:10.3390/nu10111651

  • 117.

    Wang P, Li D, Ke W, Liang D, Hu X, Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes (Lond). 2019;44(1):213225. doi:10.1038/s41366-019-0332-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Kosolofski HR, Gow SP, Robinson KA. Prevalence of obesity in the equine population of Saskatoon and surrounding area. Can Vet J. 2017;58(9):967970.

  • 119.

    Giles SL, Rands SA, Nicol CJ, Harris PA. Obesity prevalence and associated risk factors in outdoor living domestic horses and ponies. PeerJ. 2014;2:e299. doi:10.7717/peerj.299

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Gluck C, Williams J, Pratt-Phillips S. Performance analysis of show jumping rounds at a national pony competition. Comp Exerc Physiol; 2022;18(1):S13.

    • Search Google Scholar
    • Export Citation
  • 121.

    Tang Q, Hu ZC, Shen LY, Shang P, Xu HZ, Liu HX. Association of osteoarthritis and circulating adiponectin levels: a systematic review and meta-analysis. Lipids Health Dis. 2018;17(1):189. doi:10.1186/s12944-018-0838-x

    • Search Google Scholar
    • Export Citation
  • 122.

    Zhang P, Zhong ZH, Yu HT, Liu B. Significance of increased leptin expression in osteoarthritis patients. PLoS One. 2015;10(4):e0123224. doi:10.1371/journal.pone.0123224

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Dong N, Gao YH, Liu B, et al. Differential expression of adipokines in knee osteoarthritis patients with and without metabolic syndrome. Int Orthop. 2018;42(6):12831289. doi:10.1007/s00264-018-3761-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Fuentes-Romero B, Muñoz-Prieto A, Cerón JJ, et al. Measurement of plasma resistin concentrations in horses with metabolic and inflammatory disorders. Animals (Basel). 2021;12(1):77. doi:10.3390/ani12010077

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Brown MP, Trumble TN, Merritt KA. High-mobility group box chromosomal protein 1 as a potential inflammatory biomarker of joint injury in Thoroughbreds. Am J Vet Res. 2009;70(10):12301235. doi:10.2460/ajvr.70.10.1230

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Trumble TN, Scarbrough AB, Brown MP. Osteochondral injury increases type II collagen degradation products (C2C) in synovial fluid of Thoroughbred racehorses. Osteoarthritis Cartilage. 2009;17(3):371374. doi:10.1016/j.joca.2008.07.014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    McIlwraith CW, Kawcak CE, Frisbie DD, et al. Biomarkers for equine joint injury and osteoarthritis. J Orthop Res. 2018;36(3):823831. doi:10.1002/jor.23738

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Skovgaard D, Siersma VD, Klausen SB, et al. Chronic hyperglycemia, hypercholesterolemia, and metabolic syndrome are associated with risk of tendon injury. Scand J Med Sci Sports. 2021;31(9):18221831. doi:10.1111/sms.13984

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Hofberger SC, Gauff F, Thaller D, Morgan R, Keen JA, Licka TF. Assessment of tissue-specific cortisol activity with regard to degeneration of the suspensory ligaments in horses with pituitary pars intermedia dysfunction. Am J Vet Res. 2018;79(2):199210. doi:10.2460/ajvr.79.2.199

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Mousa A, Jones S, Toft A, Perros P. Spontaneous rupture of Achilles tendon: missed presentation of Cushing’s syndrome. BMJ. 28 1999;319(7209):560561. doi:10.1136/bmj.319.7209.560

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Batisse M, Somda F, Delorme JP, Desbiez F, Thieblot P, Tauveron I. Spontaneous rupture of Achilles tendon and Cushing’s disease. Case report. Ann Endocrinol (Paris). 2008;69(6):530531. doi:10.1016/j.ando.2008.06.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Yamaoka K, Tango T. Effects of lifestyle modification on metabolic syndrome: a systematic review and meta-analysis. BMC Med. 2012;10:138. doi:10.1186/1741-7015-10-138

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Riddle DL, Stratford PW. Body weight changes and corresponding changes in pain and function in persons with symptomatic knee osteoarthritis: a cohort study. Arthritis Care Res (Hoboken). 2013;65(1):1522. doi:10.1002/acr.21692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Delarocque J, Frers F, Huber K, Feige K, Warnken T. Weight loss is linearly associated with a reduction of the insulin response to an oral glucose test in Icelandic horses. BMC Vet Res. 2020;16(1):151. doi:10.1186/s12917-020-02356-w

    • Search Google Scholar
    • Export Citation
  • 135.

    Bamford NJ, Potter SJ, Baskerville CL, Harris PA, Bailey SR. Influence of dietary restriction and low-intensity exercise on weight loss and insulin sensitivity in obese equids. J Vet Intern Med. 2019;33(1):280286. doi:10.1111/jvim.15374

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Freestone JF, Beadle R, Shoemaker K, Bessin RT, Wolfsheimer KJ, Church C. Improved insulin sensitivity in hyperinsulinaemic ponies through physical conditioning and controlled feed intake. Equine Vet J. 1992;24(3):187190. doi:10.1111/j.2042-3306.1992.tb02812.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Normandin E, Chmelo E, Lyles MF, Marsh AP, Nicklas BJ. Effect of resistance training and caloric restriction on the metabolic syndrome. Med Sci Sports Exerc. 2017;49(3):413419. doi:10.1249/mss.0000000000001122

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Bakker EA, Lee DC, Sui X, et al. Association of resistance exercise, independent of and combined with aerobic exercise, with the incidence of metabolic syndrome. Mayo Clin Proc. 2017;92(8):12141222. doi:10.1016/j.mayocp.2017.02.018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Pfau T, Simons V, Rombach N, Stubbs N, Weller R. Effect of a 4-week elastic resistance band training regimen on back kinematics in horses trotting in-hand and on the lunge. Equine Vet J. 2017;49(6):829835. doi:10.1111/evj.12690

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Ursini T, Shaw K, Levine D, Richards J, Adair HS. Electromyography of the multifidus muscle in horses trotting during therapeutic exercises. Front Vet Sci. 2022;9:844776. doi:10.3389/fvets.2022.844776

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Miller MA, Croft LB, Belanger AR, et al. Prevalence of metabolic syndrome in retired National Football League players. Am J Cardiol. 2008;101(9):12811284. doi:10.1016/j.amjcard.2007.12.029

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Nostell K, Lindåse S, Edberg H, Bröjer J. The effect of insulin infusion on heart rate and systemic blood pressure in horses with equine metabolic syndrome. Equine Vet J. 2019;51(6):733737. doi:10.1111/evj.13110

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Ali AT. Polycystic ovary syndrome and metabolic syndrome. Ceska Gynekol. 2015;80(4):279289.

  • 144.

    Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107(4):840847. doi:10.1016/j.fertnstert.2017.01.017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Sessions-Bresnahan DR, Schauer KL, Heuberger AL, Carnevale EM. Effect of obesity on the preovulatory follicle and lipid fingerprint of equine oocytes. Biol Reprod. 2016;94(1):15. doi:10.1095/biolreprod.115.130187

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Sessions-Bresnahan DR, Heuberger AL, Carnevale EM. Obesity in mares promotes uterine inflammation and alters embryo lipid fingerprints and homeostasis. Biol Reprod. 2018;99(4):761772. doi:10.1093/biolre/ioy107

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Burns TA. Effects of common equine endocrine diseases on reproduction. Vet Clin North Am Equine Pract. 2016;32(3):435449. doi:10.1016/j.cveq.2016.07.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014;94(4):10271076. doi:10.1152/physrev.00029.2013

    • Search Google Scholar
    • Export Citation
  • 149.

    Robles M, Hammer C, Staniar B, Chavatte-Palmer P. Nutrition of broodmares. Vet Clin North Am Equine Pract. 2021;37(1):177205. doi:10.1016/j.cveq.2021.01.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Peugnet P, Robles M, Wimel L, Tarrade A, Chavatte-Palmer P. Management of the pregnant mare and long-term consequences on the offspring. Theriogenology. 2016;86(1):99109. doi:10.1016/j.theriogenology.2016.01.028

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Robles M, Gautier C, Mendoza L, et al. Maternal nutrition during pregnancy affects testicular and bone development, glucose metabolism and response to overnutrition in weaned horses up to two years. PLoS One. 2017;12(1):e0169295. doi:10.1371/journal.pone.0169295

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Thorson JF, Karren BJ, Bauer ML, Cavinder CA, Coverdale JA, Hammer CJ. Effect of selenium supplementation and plane of nutrition on mares and their foals: foaling data. J Anim Sci. 2010;88(3):982990. doi:10.2527/jas.2008-1646

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Gorgal R, Gonçalves E, Barros M, et al. Gestational diabetes mellitus: a risk factor for non-elective cesarean section. J Obstet Gynaecol Res. 2012;38(1):154159. doi:10.1111/j.1447-0756.2011.01659.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Daskalakis G, Marinopoulos S, Krielesi V, et al. Placental pathology in women with gestational diabetes. Acta Obstet Gynecol Scand. 2008;87(4):403407. doi:10.1080/00016340801908783

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Coverdale JA, Hammer CJ, Walter KW. Horse species symposium: nutritional programming and the impact on mare and foal performance. J Anim Sci. 2015;93(7):3261 73267. doi:10.2527/jas.2015-9057

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes (Lond). 2008;32(suppl 7):S62S71. doi:10.1038/ijo.2008.240

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Norton EM, Schultz NE, Rendahl AK, et al. Heritability of metabolic traits associated with equine metabolic syndrome in Welsh ponies and Morgan horses. Equine Vet J. 2019;51(4):475480. doi:10.1111/evj.13053

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Lewis SL, Holl HM, Streeter C, et al. Genomewide association study reveals a risk locus for equine metabolic syndrome in the Arabian horse. J Anim Sci. 2017;95(3):10711079. doi:10.2527/jas.2016.1221

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Norton EM, Avila F, Schultz NE, Mickelson JR, Geor RJ, McCue ME. Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits in ponies. J Vet Intern Med. 2019;33(2):942952. doi:10.1111/jvim.15403

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Cash CM, Fitzgerald DM, Spence RJ, de Laat MA. Preliminary analysis of the FAM174A gene suggests it lacks a strong association with equine metabolic syndrome in ponies. Domest Anim Endocrinol. 2020;72:106439. doi:10.1016/j.domaniend.2020.106439

    • Search Google Scholar
    • Export Citation
  • 161.

    Roy MM, Norton EM, Rendahl AK, et al. Assessment of the FAM174A 11G allele as a risk allele for equine metabolic syndrome. Anim Genet. 2020;51(4):607610. doi:10.1111/age.12952

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Norton E, Schultz N, Geor R, McFarlane D, Mickelson J, McCue M. Genome-wide association analyses of equine metabolic syndrome phenotypes in welsh ponies and morgan horses. Genes (Basel). 2019;10(11):893. doi:10.3390/genes10110893

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Schaefer RJ, Cullen J, Manfredi J, McCue M. Functional contexts of adipose and gluteal muscle tissue gene co-expression networks in the domestic horse. Integr Comp Biol. 2020:icaa134. doi:10.1093/icb/icaa134

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Delarocque J, Reiche DB, Meier AD, Warnken T, Feige K, Sillence MN. Metabolic profile distinguishes laminitis-susceptible and -resistant ponies before and after feeding a high sugar diet. BMC Vet Res. 2021;17(1):56. doi:10.1186/s12917-021-02763-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Jacob SI, Murray KJ, Rendahl AK, Geor RJ, Schultz NE, McCue ME. Metabolic perturbations in Welsh Ponies with insulin dysregulation, obesity, and laminitis. J Vet Intern Med. 2018;32(3):12151233. doi:10.1111/jvim.15095

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Patterson Rosa L, Mallicote MF, Long MT, Brooks SA. Metabogenomics reveals four candidate regions involved in the pathophysiology of Equine Metabolic Syndrome. Mol Cell Probes. 2020;53:101620. doi:10.1016/j.mcp.2020.101620

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Rexroad C, Vallet J, Matukumalli LK, et al. Genome to phenome: improving animal health, production, and well-being–a new USDA blueprint for animal genome research 2018–2027. Front Genet. 2019;10:327. doi:10.3389/fgene.2019.00327

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Elliott HR, Sharp GC, Relton CL, Lawlor DA. Epigenetics and gestational diabetes: a review of epigenetic epidemiology studies and their use to explore epigenetic mediation and improve prediction. Diabetologia. 2019;62(12):21712178. doi:10.1007/s00125-019-05011-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Allard C, Desgagné V, Patenaude J, et al. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics. 2015;10(4):342351. doi:10.1080/15592294.2015.1029700

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Zhang A, Sun H, Wang X. Serum metabolomics as a novel diagnostic approach for disease: a systematic review. Anal Bioanal Chem. 2012;404(4):12391245. doi:10.1007/s00216-012-6117-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Batch BC, Shah SH, Newgard CB, et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism. 2013;62(7):961969. doi:10.1016/j.metabol.2013.01.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Menni C, Fauman E, Erte I, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013;62(12):42704276. doi:10.2337/db13-0570

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Walford GA, Davis J, Warner AS, et al. Branched chain and aromatic amino acids change acutely following two medical therapies for type 2 diabetes mellitus. Metabolism. 2013;62(12):17721778. doi:10.1016/j.metabol.2013.07.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Huffman KM, Shah SH, Stevens RD, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32(9):16781683. doi:10.2337/dc08-2075

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Chen Q, Wang W, Xia MF, et al. Identification of circulating sphingosine kinase-related metabolites for prediction of type 2 diabetes. J Transl Med. 2021;19(1):393. doi:10.1186/s12967-021-03066-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639648. doi:10.2337/db12-0495

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Milburn MV, Lawton KA. Application of metabolomics to diagnosis of insulin resistance. Annu Rev Med. 2013;64:291305. doi:10.1146/annurev-med-061511-134747

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Gall WE, Beebe K, Lawton KA, et al. Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One. 2010;5(5):e10883. doi:10.1371/journal.pone.0010883

    • Search Google Scholar
    • Export Citation
  • 179.

    Ho JE, Larson MG, Vasan RS, et al. Metabolite profiles during oral glucose challenge. Diabetes. 2013;62(8):26892698. doi:10.2337/db12-0754

  • 180.

    Bain JR, Muehlbauer MJ. Metabolomics reveals unexpected responses to oral glucose. Diabetes. 2013;62(8):26512653. doi:10.2337/db13-0605

  • 181.

    Coleman MC, Whitfield-Cargile CM, Madrigal RG, Cohen ND. Comparison of the microbiome, metabolome, and lipidome of obese and non-obese horses. PLoS One. 2019;14(4):e0215918. doi:10.1371/journal.pone.0215918

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Klein DJ, Anthony TG, McKeever KH. Metabolomics in equine sport and exercise. J Anim Physiol Anim Nutr (Berl). 2021;105(1):140148. doi:10.1111/jpn.13384

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Klein DJ, McKeever KH, Mirek ET, Anthony TG. Metabolomic response of equine skeletal muscle to acute fatiguing exercise and training. Front Physiol. 2020;11:110. doi:10.3389/fphys.2020.00110

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Savikj M, Stocks B, Sato S, et al. Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients–a randomized crossover trial. Metabolism. 2022;135:155268. doi:10.1016/j.metabol.2022.155268

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Mancilla R, Brouwers B, Schrauwen-Hinderling VB, Hesselink MKC, Hoeks J, Schrauwen P. Exercise training elicits superior metabolic effects when performed in the afternoon compared to morning in metabolically compromised humans. Physiol Rep. 2021;8(24):e14669. doi:10.14814/phy2.14669

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Stefaniuk M, Ropka-Molik K. RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J Appl Genet. 2016;57(2):199206. doi:10.1007/s13353-015-0320-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Manfredi JM. Identifying Breed Differences in Insulin Dynamics, Skeletal Muscle and Adipose Tissue Histology, and Gene Expression. Michigan State University; 2016.

    • Search Google Scholar
    • Export Citation
  • 188.

    Ropka-Molik K, Stefaniuk-Szmukier M, Żukowski K, Piórkowska K, Gurgul A, Bugno-Poniewierska M. Transcriptome profiling of Arabian horse blood during training regimens. BMC Genet. 2017;18(1):31. doi:10.1186/s12863-017-0499-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 189.

    Kogelman LJ, Fu J, Franke L, et al. Inter-tissue gene co-expression networks between metabolically healthy and unhealthy obese individuals. PLoS One. 2016;11(12):e0167519. doi:10.1371/journal.pone.0167519

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Pennington PM, Splan RK, Jacobs RD, et al. Influence of metabolic status and diet on early pregnant equine histotroph proteome: preliminary findings. J Equine Vet Sci. 2020;88:102938. doi:10.1016/j.jevs.2020.102938

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Henry ML, Velez-Irizarry D, Pagan JD, Sordillo L, Gandy J, Valberg SJ. The impact of N-acetyl cysteine and coenzyme Q10 supplementation on skeletal muscle antioxidants and proteome in fit thoroughbred horses. Antioxidants (Basel). 2021;10(11):1739. doi:10.3390/antiox10111739

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 192.

    Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci. 2013;14(10):2065820681. doi:10.3390/ijms141020658

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 193.

    Daugaard JR, Richter EA. Relationship between muscle fibre composition, glucose transporter protein 4 and exercise training: possible consequences in non-insulin-dependent diabetes mellitus. Acta Physiol Scand. 2001;171(3):267276. doi:10.1046/j.1365-201x.2001.00829.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016;31(4):283293. doi:10.1152/physiol.00041.2015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Binvignat M, Sokol H, Mariotti-Ferrandiz E, Berenbaum F, Sellam J. Osteoarthritis and gut microbiome. Joint Bone Spine. 2021;88(5):105203. doi:10.1016/j.jbspin.2021.105203

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 196.

    Dougal K, Harris PA, Edwards A, et al. A comparison of the microbiome and the metabolome of different regions of the equine hindgut. FEMS Microbiol Ecol. 2012;82(3):642652. doi:10.1111/j.1574-6941.2012.01441.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    Dougal K, de la Fuente G, Harris PA, et al. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing. PLoS One. 2014;9(2):e87424. doi:10.1371/journal.pone.0087424

    • Search Google Scholar
    • Export Citation
  • 198.

    Costa MC, Weese JS. Understanding the intestinal microbiome in health and disease. Vet Clin North Am Equine Pract. 2018;34(1):112. doi:10.1016/j.cveq.2017.11.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 199.

    Fernandes KA, Kittelmann S, Rogers CW, et al. Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change. PLoS One. 2014;9(11):e112846. doi:10.1371/journal.pone.0112846

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 200.

    Elzinga SE, Weese JS, Adams AA. Comparison of the fecal microbiota in horses with equine metabolic syndrome and metabolically normal controls fed a similar diet. J Equine Vet Sci. 2016;44:916.

    • Search Google Scholar
    • Export Citation

Advertisement

A one-health approach to identifying and mitigating the impact of endocrine disorders on human and equine athletes

Jane M. ManfrediDepartment of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI

Search for other papers by Jane M. Manfredi in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Sarah I. JacobDepartment of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI

Search for other papers by Sarah I. Jacob in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Brooke L. BogerComparative Medicine and Integrative Biology, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI

Search for other papers by Brooke L. Boger in
Current site
Google Scholar
PubMed
Close
 BA
, and
Elaine M. NortonDepartment of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ

Search for other papers by Elaine M. Norton in
Current site
Google Scholar
PubMed
Close
 DVM, PhD