Shared systemic effects of endocrine disease in the horse and human. Created with BioRender.com.
A combined approach to assessing phenotype in light of multiomic analyses (genomics, metabolomics, transcriptomics, proteomics, and microbiomics) to understand the effects of endocrine disorders on performance. Created with BioRender.com.
Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356–359.
Zhuo Q, Yang W, Chen J, Wang Y. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8(12):729–737. doi:10.1038/nrrheum.2012.135
Monira Hussain S, Wang Y, Cicuttini FM, et al. Incidence of total knee and hip replacement for osteoarthritis in relation to the metabolic syndrome and its components: a prospective cohort study. Semin Arthritis Rheum. 2014;43(4):429–436. doi:10.1016/j.semarthrit.2013.07.013
Morgan R, Keen J, McGowan C. Equine metabolic syndrome. Vet Rec. 2015;177(7):173–179. doi:10.1136/vr.103226
Hofberger S, Gauff F, Licka T. Suspensory ligament degeneration associated with pituitary pars intermedia dysfunction in horses. Vet J. 2015;203(3):348–350. doi:10.1016/j.tvjl.2014.12.037
Banse HE, Whitehead AE, McFarlane D, Chelikani PK. Markers of muscle atrophy and impact of treatment with pergolide in horses with pituitary pars intermedia dysfunction and muscle atrophy. Domest Anim Endocrinol. 2021;76:106620. doi:10.1016/j.domaniend.2021.106620
Geor R, Frank N. Metabolic syndrome-From human organ disease to laminar failure in equids. Vet Immunol Immunopathol. 2009;129(3–4):151–154. doi:10.1016/j.vetimm.2008.11.012
Frank N, Geor RJ, Bailey SR, Durham AE, Johnson PJ. Equine metabolic syndrome. J Vet Intern Med. 2010;24(3):467–475. doi:10.1111/j.1939-1676.2010.0503.x
Robles M, Nouveau E, Gautier C, et al. Maternal obesity increases insulin resistance, low-grade inflammation and osteochondrosis lesions in foals and yearlings until 18 months of age. PLoS One. 2018;13(1):e0190309. doi:10.1371/journal.pone.0190309
Heliczer N, Gerber V, Bruckmaier R, van der Kolk JH, de Solis CN. Cardiovascular findings in ponies with equine metabolic syndrome. J Am Vet Med Assoc.2017;250(9):1027–1035. doi:10.2460/javma.250.9.1027
D’Fonseca NMM, Beukers, M, Wijnberg ID, et al. Effect of a long-term high-energy diet on cardiovascular parameters in Shetland pony mares. J Vet Intern Med. 2021;35(5):2427–2436. doi:10.1111/jvim.16229
Sessions-Bresnahan DR, Carnevale EM. The effect of equine metabolic syndrome on the ovarian follicular environment. J Anim Sci. 2014;92(4):1485–1494. doi:10.2527/jas.2013-7275
Durham AE, Frank N, McGowan CM, et al. ECEIM consensus statement on equine metabolic syndrome. J Vet Intern Med. 2019;33(2):335–349. doi:10.1111/jvim.15423
Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26(2):19–39.
Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015;58(2):221–232. doi:10.1007/s00125-014-3451-1
McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL. GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab. 2011;104(4):648–653. doi:10.1016/j.ymgme.2011.08.026
Bratanova-Tochkova TK, Cheng H, Daniel S, et al. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes. 2002;51(suppl 1):S83–S90. doi:10.2337/diabetes.51.2007.s83
Pratt SE, Geor RJ, McCutcheon LJ. Repeatability of 2 methods for assessment of insulin sensitivity and glucose dynamics in horses. J Vet Intern Med. 2005;19(6):883–888.
Toth F, Frank N, Elliott SB, Perdue K, Geor RJ, Boston RC. Optimisation of the frequently sampled intravenous glucose tolerance test to reduce urinary glucose spilling in horses. Equine Vet J. 2009;41(9):844–851. doi:10.2746/042516409x439661
Czech MP, Buxton JM. Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes. J Biol Chem. 1993;268(13):9187–9190.
de Graaf-Roelfsema E. Glucose homeostasis and the enteroinsular axis in the horse: a possible role in equine metabolic syndrome. Vet J. 2014;199(1):11–18. doi:10.1016/j.tvjl.2013.09.064
Polonsky KS, Given BD, Hirsch L, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81(2):435–441. doi:10.1172/jci113338
Tóth F, Frank N, Martin-Jiménez T, Elliott SB, Geor RJ, Boston RC. Measurement of C-peptide concentrations and responses to somatostatin, glucose infusion, and insulin resistance in horses. Equine Vet J. 2010;42(2):149–155. doi:10.2746/042516409x478497
Faber OK, Christensen K, Kehlet H, Madsbad S, Binder C. Decreased insulin removal contributes to hyperinsulinemia in obesity. J Clin Endocrinol Metab. 1981;53(3):618–621. doi:10.1210/jcem-53-3-618
Bamford NJ, Baskerville CL, Harris PA, Bailey SR. Postprandial glucose, insulin, and glucagon-like peptide-1 responses of different equine breeds adapted to meals containing micronized maize. J Anim Sci. 2015;93(7):3377–3383. doi:10.2527/jas.2014-8736
Fitzgerald DM, Walsh DM, Sillence MN, Pollitt CC, de Laat MA. Insulin and incretin responses to grazing in insulin-dysregulated and healthy ponies. J Vet Intern Med. 2019;33(1):225–232. doi:10.1111/jvim.15363
Frank N, Walsh DM. Repeatability of oral sugar test results, glucagon-like peptide-1 measurements, and serum high-molecular-weight adiponectin concentrations in horses. J Vet Intern Med. 2017;31(4):1178–1187. doi:10.1111/jvim.14725
Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes–state-of-the-art. Mol Metab. 2021;46:101102. doi:10.1016/j.molmet.2020.101102
Stefanovski D, Robinson MA, Van Eps A. Effect of a GLP-1 mimetic on the insulin response to oral sugar testing in horses. BMC Vet Res. 2022;18(1):294. doi:10.1186/s12917-022-03394-2
Manfredi JM, Stapley ED, Nadeau JA, Nash D. Investigation of the effects of a dietary supplement on insulin and adipokine concentrations in equine metabolic syndrome/insulin dysregulation. J Equine Vet Sci. 2020;88:102930. doi:10.1016/j.jevs.2020.102930
Durham AE. Therapeutics for equine endocrine disorders. Vet Clin North Am Equine Pract. 2017;33(1):127–139. doi:10.1016/j.cveq.2016.11.003
Ericsson AC, Johnson PJ, Gieche LM, et al. The influence of diet change and oral metformin on blood glucose regulation and the fecal microbiota of healthy horses. Animals (Basel). 2021;11(4):976. doi:10.3390/ani11040976
Hustace JL, Firshman AM, Mata JE. Pharmacokinetics and bioavailability of metformin in horses. Am J Vet Res. 2009;70(5):665–668. doi:10.2460/ajvr.70.5.665
Rendle DI, Rutledge F, Hughes KJ, Heller J, Durham AE. Effects of metformin hydrochloride on blood glucose and insulin responses to oral dextrose in horses. Equine Vet J. 2013;45(6):751–754. doi:10.1111/evj.12068
Tinworth KD, Boston RC, Harris PA, Sillence MN, Raidal SL, Noble GK. The effect of oral metformin on insulin sensitivity in insulin-resistant ponies. Vet J. 2012;191(1):79–84. doi:10.1016/j.tvjl.2011.01.015
Frank N, Elliott SB, Boston RC. Effects of long-term oral administration of levothyroxine sodium on glucose dynamics in healthy adult horses. Am J Vet Res. 2008;69(1):76–81. doi:10.2460/ajvr.69.1.76
Geor RJ, Harris P. Dietary management of obesity and insulin resistance: countering risk for laminitis. Vet Clin North Am Equine Pract. 2009;25(1):51–65. doi:10.1016/j.cveq.2009.02.001
Gong IY, Atzema CL, Lega IC, et al. Levothyroxine dose and risk of atrial fibrillation: a nested case-control study. Am Heart J. 2021;232:47–56. doi:10.1016/j.ahj.2020.09.016
Kritchevsky J, Olave C, Tinkler S, et al. A randomised, controlled trial to determine the effect of levothyroxine on Standardbred racehorses. Equine Vet J. 2022;54(3):584–591. doi:10.1111/evj.13480
Delahanty LM, Pan Q, Jablonski KA, et al. Genetic predictors of weight loss and weight regain after intensive lifestyle modification, metformin treatment, or standard care in the Diabetes Prevention Program. Diabetes Care. 2012;35(2):363–366. doi:10.2337/dc11-1328
Brasnyo P, Molnar GA, Mohas M, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr. 2011;106(3):383–389. doi:10.1017/s0007114511000316
Kellon EM, Gustafson KM. Use of the SGLT2 inhibitor canagliflozin for control of refractory equine hyperinsulinemia and laminitis. Open Vet J. 2022;12(4):511–518. doi:10.5455/OVJ.2022.v12.i4.14
Sundra T, Kelty E, Rendle D. Preliminary observations on the use of ertugliflozin in the management of hyperinsulinemia and laminitis in 51 horses: a case series. Equine Vet Educ. 2022;00:1–10. doi:10.1111/eve.13738
Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17. doi:10.1007/978-3-319-48382-5_1
Perseghin G. Muscle lipid metabolism in the metabolic syndrome. Curr Opin Lipidol. 2005;16(4):416–420. doi:10.1097/01.mol.0000174401.07056.56
Arner P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab Res Rev. 2002;18(suppl 2):S5–S9. doi:10.1002/dmrr.254
Treiber KH, Kronfeld DS, Hess TM, Byrd BM, Splan RK, Staniar WB. Evaluation of genetic and metabolic predispositions and nutritional risk factors for pasture-associated laminitis in ponies. J Am Vet Med Assoc. 2006;228(10):1538–1545. doi:10.2460/javma.228.10.1538
Carter RA, Treiber KH, Geor RJ, Douglass L, Harris PA. Prediction of incipient pasture-associated laminitis from hyperinsulinaemia, hyperleptinaemia and generalised and localised obesity in a cohort of ponies. Equine Vet J. 2009;41(2):171–178.
Bailey SR, Habershon-Butcher JL, Ransom KJ, Elliott J, Menzies-Gow NJ. Hypertension and insulin resistance in a mixed-breed population of ponies predisposed to laminitis. Am J Vet Res. 2008;69(1):122–129. doi:10.2460/ajvr.69.1.122
Frank N, Elliott SB, Brandt LE, Keisler DH. Physical characteristics, blood hormone concentrations, and plasma lipid concentrations in obese horses with insulin resistance. J Am Vet Med Assoc. 2006;228(9):1383–1390. doi:10.2460/javma.228.9.1383
Coleman MC, Walzem RL, Kieffer AJ, Minamoto T, Suchodolski J, Cohen ND. Novel lipoprotein density profiling in laminitic, obese, and healthy horses. Domest Anim Endocrinol. 2019;68:92–99. doi:10.1016/j.domaniend.2018.11.003
Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48(6):1253–1262. doi:10.1194/jlr.R700005-JLR200
Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–2355. doi:10.1194/jlr.M500294-JLR200
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest. 2019;42(11):1257–1272. doi:10.1007/s40618-019-01052-3
Arner E, Westermark PO, Spalding KL, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59(1):105–109. doi:10.2337/db09-0942
De Lucia Rolfe E, Ong KK, Sleigh A, Dunger DB, Norris SA. Abdominal fat depots associated with insulin resistance and metabolic syndrome risk factors in black African young adults. BMC Public Health. 2015;15:1013. doi:10.1186/s12889-015-2147-x
Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol. 2018;40(2):215–224. doi:10.1007/s00281-017-0666-5
Henninger AM, Eliasson B, Jenndahl LE, Hammarstedt A. Adipocyte hypertrophy, inflammation and fibrosis characterize subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes. PLoS One. 2014;9(8):e105262. doi:10.1371/journal.pone.0105262
Basinska K, Marycz K, Sieszek A, Nicpon J. The production and distribution of IL-6 and TNF-a in subcutaneous adipose tissue and their correlation with serum concentrations in Welsh ponies with equine metabolic syndrome. J Vet Sci. 2015;16(1):113–120. doi:10.4142/jvs.2015.16.1.113
Reynolds A, Keen JA, Fordham T, Morgan RA. Adipose tissue dysfunction in obese horses with equine metabolic syndrome. Equine Vet J. 2019;51(6):760–766. doi:10.1111/evj.13097
Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets. 2007;6(3):168–173. doi:10.2174/187152807781696464
Marycz K, Szłapka-Kosarzewska J, Geburek F, Kornicka-Garbowska K. Systemic administration of rejuvenated adipose-derived mesenchymal stem cells improves liver metabolism in equine metabolic syndrome (EMS)–new approach in veterinary regenerative medicine. Stem Cell Rev Rep. 2019;15(6):842–850. doi:10.1007/s12015-019-09913-3
Bruynsteen L, Erkens T, Peelman LJ, et al. Expression of inflammation-related genes is associated with adipose tissue location in horses. BMC Vet Res. 2013;9(1):240. doi:10.1186/1746-6148-9-240
Burns TA, Geor RJ, Mudge MC, McCutcheon LJ, Hinchcliff KW, Belknap JK. Proinflammatory cytokine and chemokine gene expression profiles in subcutaneous and visceral adipose tissue depots of insulin-resistant and insulin-sensitive light breed horses. J Vet Intern Med. 2010;24(4):932–939. doi:10.1111/j.1939-1676.2010.0551.x
Waller AP, Huettner L, Kohler K, Lacombe VA. Novel link between inflammation and impaired glucose transport during equine insulin resistance. Vet Immunol Immunopathol. 2012;149(3–4):208–215. doi:10.1016/j.vetimm.2012.07.003
Suagee JK, Corl BA, Crisman MV, Pleasant RS, Thatcher CD, Geor RJ. Relationships between body condition score and plasma inflammatory cytokines, insulin, and lipids in a mixed population of light-breed horses. J Vet Intern Med. 2013;27(1):157–163. doi:10.1111/jvim.12021
Holbrook TC, Tipton T, McFarlane D. Neutrophil and cytokine dysregulation in hyperinsulinemic obese horses. Vet Immunol Immunopathol. 2012;145(1–2):283–289. doi:10.1016/j.vetimm.2011.11.013
Zak A, Siwinska N, Elzinga S, et al. Effects of equine metabolic syndrome on inflammation and acute-phase markers in horses. Domest Anim Endocrinol. 2020;72:106448. doi:10.1016/j.domaniend.2020.106448
Treiber K, Carter R, Gay L, Williams C, Geor R. Inflammatory and redox status of ponies with a history of pasture-associated laminitis. Vet Immunol Immunopathol. 2009;129(3–4):216–220. doi:10.1016/j.vetimm.2008.11.004
Vick MM, Adams AA, Murphy BA, et al. Relationships among inflammatory cytokines, obesity, and insulin sensitivity in the horse. J Anim Sci. 2007;85(5):1144–1155. doi:10.2527/jas.2006-673
Elzinga SE, Rohleder B, Schanbacher B, McQuerry K, Barker VD, Adams AA. Metabolic and inflammatory responses to the common sweetener stevioside and a glycemic challenge in horses with equine metabolic syndrome. Domest Anim Endocrinol. 2017;60:1–8. doi:10.1016/j.domaniend.2017.01.001
Dong J, Dong Y, Chen F, Mitch WE, Zhang L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes (Lond). 2016;40(3):434–442. doi:10.1038/ijo.2015.200
Cleasby ME, Jarmin S, Eilers W, et al. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal. Am J Physiol Endocrinol Metab. 2014;306(7):E814–E823. doi:10.1152/ajpendo.00586.2013
Hill EW, Gu J, Eivers SS, et al. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One. 2010;5(1):e8645. doi:10.1371/journal.pone.0008645
Baron EE, Lopes MS, Mendonca D, da Camara Machado A. SNP identification and polymorphism analysis in exon 2 of the horse myostatin gene. Anim Genet. 2012;43(2):229–232. doi:10.1111/j.1365-2052.2011.02229.x
Petersen JL, Valberg SJ, Mickelson JR, McCue ME. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Anim Genet. 2014;5(6):827–835. doi:10.1111/age.12205
Takahashi H, Sato K, Yamaguchi T, et al. Myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese shorthorn cattle. Domest Anim Endocrinol. 2014;48:62–68. doi:10.1016/j.domaniend.2014.01.007
Frank N, Tadros EM. Insulin dysregulation. Equine Vet J. 2014;46(1):103–112. doi:10.1111/evj.12169
Schuver A. Frank N, Chameroy KA, Elliot SB. Assessment of insulin and glucose dynamics by using an oral sugar test in horses. J Equine Vet Sci. 2014;34(4):465–470. doi:10.1016/j.jevs.2013.09.006
Geor RJ. Current concepts on the pathophysiology of pasture-associated laminitis. Vet Clin North Am Equine Pract. 2010;26(2):265–76. doi:10.1016/j.cveq.2010.06.001
Carter RA, McCutcheon LJ, Valle E, Meilahn EN, Geor RJ. Effects of exercise training on adiposity, insulin sensitivity, and plasma hormone and lipid concentrations in overweight or obese, insulin-resistant horses. Am J Vet Res. 2010;71(3):314–321. doi:10.2460/ajvr.71.3.314
Bamford NJ, Potter SJ, Baskerville CL, Harris PA, Bailey SR. Effect of increased adiposity on insulin sensitivity and adipokine concentrations in different equine breeds adapted to cereal-rich or fat-rich meals. Vet J. 2016;214:14–20. doi:10.1016/j.tvjl.2016.02.002
Yadav A, Kataria MA, Saini V. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80–84. doi:10.1016/j.cca.2012.12.007
Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 2010;1212:E1–E19. doi:10.1111/j.1749-6632.2010.05875.x
Menzies-Gow NJ, Harris PA, Elliott J. Prospective cohort study evaluating risk factors for the development of pasture-associated laminitis in the United Kingdom. Equine Vet J. 2016;49(3):300–306. doi:10.1111/evj.12606
Rivero JL, van Breda E, Rogers CW, Lindner A, van Oldruitenborgh-Oosterbaan MM. Unexplained underperformance syndrome in sport horses: classification, potential causes and recognition. Equine Vet J. 2008;40(6):611–618. doi:10.2746/042516408x299118
Cadegiani FA, Kater CE. Hypothalamic-pituitary-adrenal (HPA) axis functioning in overtraining syndrome: findings from endocrine and metabolic responses on overtraining syndrome (EROS)-EROS-HPA axis. Sports Med Open. 2017;3(1):45. doi:10.1186/s40798-017-0113-0
de Graaf-Roelfsema E, Keizer HA, van Breda E, Wijnberg ID, van der Kolk JH. Hormonal responses to acute exercise, training and overtraining. A review with emphasis on the horse. Vet Q. 2007;29(3):82–101. doi:10.1080/01652176.2007.9695232
Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol. 2020;35:101480. doi:10.1016/j.redox.2020.101480
Cadegiani FA, Kater CE. Hormonal aspects of overtraining syndrome: a systematic review. BMC Sports Sci Med Rehabil. 2017;9:14. doi:10.1186/s13102-017-0079-8
Collins KH, Herzog W, MacDonald GZ, et al. Obesity, metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol. 2018;9:112. doi:10.3389/fphys.2018.00112
Banse HE, Holbrook TC, Frank N, McFarlane D. Relationship of skeletal muscle inflammation with obesity and obesity-associated hyperinsulinemia in horses. Can J Vet Res. 2016;80(3):217–224.
Stubbs NC, Kaiser LJ, Hauptman J, Clayton HM. Dynamic mobilisation exercises increase cross sectional area of musculus multifidus. Equine Vet J. 2011;43(5):522–529. doi:10.1111/j.2042-3306.2010.00322.x
Nagy A, Murray JK, Dyson S. Elimination from elite endurance rides in nine countries: a preliminary study. Equine Vet J Suppl. 2010;(38):637–643. doi:10.1111/j.2042-3306.2010.00220.x
Jansson A, Gunnarsson V, Ringmark S, et al. Increased body fat content in horses alters metabolic and physiological exercise response, decreases performance, and increases locomotion asymmetry. Physiol Rep. 2021;9(11):e14824. doi:10.14814/phy2.14824
Horsak B, Schwab C, Baca A, et al. Effects of a lower extremity exercise program on gait biomechanics and clinical outcomes in children and adolescents with obesity: a randomized controlled trial. Gait Posture. 2019;70:122–129. doi:10.1016/j.gaitpost.2019.02.032
Shultz SP, D’Hondt E, Fink PW, Lenoir M, Hills AP. The effects of pediatric obesity on dynamic joint malalignment during gait. Clin Biomech (Bristol, Avon). 2014;29(7):835–838. doi:10.1016/j.clinbiomech.2014.05.004
Li JS, Tsai TY, Clancy MM, Li G, Lewis CL, Felson DT. Weight loss changed gait kinematics in individuals with obesity and knee pain. Gait Posture. 2019;68:461–465. doi:10.1016/j.gaitpost.2018.12.031
de Oliveira Máximo R, de Oliveira DC, Ramírez PC, et al. Dynapenia, abdominal obesity or both: which accelerates the gait speed decline most? Age Ageing. 2021;50(5):1616–1625. doi:10.1093/ageing/afab093
Sanchez-Santos MT, Judge A, Gulati M, et al. Association of metabolic syndrome with knee and hand osteoarthritis: a community-based study of women. Semin Arthritis Rheum. 2019;48(5):791–798. doi:10.1016/j.semarthrit.2018.07.007
Valdes AM. Metabolic syndrome and osteoarthritis pain: common molecular mechanisms and potential therapeutic implications. Osteoarthritis Cartilage. 2020;28(1):7–9. doi:10.1016/j.joca.2019.06.015
Abate M, Schiavone C, Salini V, Andia I. Occurrence of tendon pathologies in metabolic disorders. Rheumatology (Oxford). 2013;52(4):599–608. doi:10.1093/rheumatology/kes395
Oliva F, Marsilio E, Asparago G, et al. Achilles tendon rupture and dysmetabolic diseases: a multicentric, epidemiologic study. J Clin Med. 2022;11(13):3698. doi:10.3390/jcm11133698
Bay-Jensen AC, Slagboom E, Chen-An P, et al. Role of hormones in cartilage and joint metabolism: understanding an unhealthy metabolic phenotype in osteoarthritis. Menopause. 2012;20(5):578–586. doi:10.1097/gme.0b013e3182745993
Jiang H, Pu Y, Li ZH, et al. Adiponectin, may be a potential protective factor for obesity-related osteoarthritis. Diabetes Metab Syndr Obes. 2022;15:1305–1319. doi:10.2147/dmso.s359330
Liu B, Gao YH, Dong N, et al. Differential expression of adipokines in the synovium and infrapatellar fat pad of osteoarthritis patients with and without metabolic syndrome. Connect Tissue Res. 2019;60(6):611–618. doi:10.1080/03008207.2019.1620221
Schett G, Kleyer A, Perricone C, et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care. 2013;36(2):403–409. doi:10.2337/dc12-0924
Xie C, Chen Q. Adipokines: new therapeutic target for osteoarthritis? Curr Rheumatol Rep. 7 2019;21(12):71. doi:10.1007/s11926-019-0868-z
Boyce M, Trumble TN, Groschen DM, Merritt KA, Brown MP. Collagen biomarker response to acute joint injury in a non-terminal model of osteoarthritis. 2011.
Boyce M, Trumble TN, Carlson CS, Groschen DM, Merritt KA, Brown MP. Non-terminal model of acute joint injury causes early osteoarthritis. Osteoarthritis and Cartilage. 2013;21(5):746–755. doi:10.1016/j.oca.2013.02.653
Trumble TN, Groschen DM, Ha N, Boyce M, Merritt KA, Brown MP. New urine biomarker assay compares to synovial fluid changes after acute joint injury in an equine model of osteoarthritis. Osteoarthritis Cartilage. 2012;20(suppl 1):S91.
Le TK, Montejano LB, Cao Z, Zhao Y, Ang D. Health care costs in US patients with and without a diagnosis of osteoarthritis. J Pain Res. 2012;5:23–30. doi:10.2147/jpr.s27275
Ray A, Ray BK. An inflammation-responsive transcription factor in the pathophysiology of osteoarthritis. Biorheology. 2008;45(3–4):399–409. doi:10.3233/BIR-2008-0500
Watts AE, Dabareiner R, Marsh C, Carter GK, Cummings KJ. A randomized, controlled trial of the effects of resveratrol administration in performance horses with lameness localized to the distal tarsal joints. J Am Vet Med Assoc. 2016;249(6):650–659. doi:10.2460/javma.249.6.650
Zhou Q, Wang Y, Han X, Fu S, Zhu C, Chen Q. Efficacy of resveratrol supplementation on glucose and lipid metabolism: a meta-analysis and systematic review. Front Physiol. 2022;13:795980. doi:10.3389/fphys.2022.795980
Chaplin A, Carpéné C, Mercader J. Resveratrol, metabolic syndrome, and gut microbiota. Nutrients. 2018;10(11):1651. doi:10.3390/nu10111651
Wang P, Li D, Ke W, Liang D, Hu X, Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes (Lond). 2019;44(1):213–225. doi:10.1038/s41366-019-0332-1
Kosolofski HR, Gow SP, Robinson KA. Prevalence of obesity in the equine population of Saskatoon and surrounding area. Can Vet J. 2017;58(9):967–970.
Giles SL, Rands SA, Nicol CJ, Harris PA. Obesity prevalence and associated risk factors in outdoor living domestic horses and ponies. PeerJ. 2014;2:e299. doi:10.7717/peerj.299
Gluck C, Williams J, Pratt-Phillips S. Performance analysis of show jumping rounds at a national pony competition. Comp Exerc Physiol; 2022;18(1):S13.
Tang Q, Hu ZC, Shen LY, Shang P, Xu HZ, Liu HX. Association of osteoarthritis and circulating adiponectin levels: a systematic review and meta-analysis. Lipids Health Dis. 2018;17(1):189. doi:10.1186/s12944-018-0838-x
Zhang P, Zhong ZH, Yu HT, Liu B. Significance of increased leptin expression in osteoarthritis patients. PLoS One. 2015;10(4):e0123224. doi:10.1371/journal.pone.0123224
Dong N, Gao YH, Liu B, et al. Differential expression of adipokines in knee osteoarthritis patients with and without metabolic syndrome. Int Orthop. 2018;42(6):1283–1289. doi:10.1007/s00264-018-3761-x
Fuentes-Romero B, Muñoz-Prieto A, Cerón JJ, et al. Measurement of plasma resistin concentrations in horses with metabolic and inflammatory disorders. Animals (Basel). 2021;12(1):77. doi:10.3390/ani12010077
Brown MP, Trumble TN, Merritt KA. High-mobility group box chromosomal protein 1 as a potential inflammatory biomarker of joint injury in Thoroughbreds. Am J Vet Res. 2009;70(10):1230–1235. doi:10.2460/ajvr.70.10.1230
Trumble TN, Scarbrough AB, Brown MP. Osteochondral injury increases type II collagen degradation products (C2C) in synovial fluid of Thoroughbred racehorses. Osteoarthritis Cartilage. 2009;17(3):371–374. doi:10.1016/j.joca.2008.07.014
McIlwraith CW, Kawcak CE, Frisbie DD, et al. Biomarkers for equine joint injury and osteoarthritis. J Orthop Res. 2018;36(3):823–831. doi:10.1002/jor.23738
Skovgaard D, Siersma VD, Klausen SB, et al. Chronic hyperglycemia, hypercholesterolemia, and metabolic syndrome are associated with risk of tendon injury. Scand J Med Sci Sports. 2021;31(9):1822–1831. doi:10.1111/sms.13984
Hofberger SC, Gauff F, Thaller D, Morgan R, Keen JA, Licka TF. Assessment of tissue-specific cortisol activity with regard to degeneration of the suspensory ligaments in horses with pituitary pars intermedia dysfunction. Am J Vet Res. 2018;79(2):199–210. doi:10.2460/ajvr.79.2.199
Mousa A, Jones S, Toft A, Perros P. Spontaneous rupture of Achilles tendon: missed presentation of Cushing’s syndrome. BMJ. 28 1999;319(7209):560–561. doi:10.1136/bmj.319.7209.560
Batisse M, Somda F, Delorme JP, Desbiez F, Thieblot P, Tauveron I. Spontaneous rupture of Achilles tendon and Cushing’s disease. Case report. Ann Endocrinol (Paris). 2008;69(6):530–531. doi:10.1016/j.ando.2008.06.003
Yamaoka K, Tango T. Effects of lifestyle modification on metabolic syndrome: a systematic review and meta-analysis. BMC Med. 2012;10:138. doi:10.1186/1741-7015-10-138
Riddle DL, Stratford PW. Body weight changes and corresponding changes in pain and function in persons with symptomatic knee osteoarthritis: a cohort study. Arthritis Care Res (Hoboken). 2013;65(1):15–22. doi:10.1002/acr.21692
Delarocque J, Frers F, Huber K, Feige K, Warnken T. Weight loss is linearly associated with a reduction of the insulin response to an oral glucose test in Icelandic horses. BMC Vet Res. 2020;16(1):151. doi:10.1186/s12917-020-02356-w
Bamford NJ, Potter SJ, Baskerville CL, Harris PA, Bailey SR. Influence of dietary restriction and low-intensity exercise on weight loss and insulin sensitivity in obese equids. J Vet Intern Med. 2019;33(1):280–286. doi:10.1111/jvim.15374
Freestone JF, Beadle R, Shoemaker K, Bessin RT, Wolfsheimer KJ, Church C. Improved insulin sensitivity in hyperinsulinaemic ponies through physical conditioning and controlled feed intake. Equine Vet J. 1992;24(3):187–190. doi:10.1111/j.2042-3306.1992.tb02812.x
Normandin E, Chmelo E, Lyles MF, Marsh AP, Nicklas BJ. Effect of resistance training and caloric restriction on the metabolic syndrome. Med Sci Sports Exerc. 2017;49(3):413–419. doi:10.1249/mss.0000000000001122
Bakker EA, Lee DC, Sui X, et al. Association of resistance exercise, independent of and combined with aerobic exercise, with the incidence of metabolic syndrome. Mayo Clin Proc. 2017;92(8):1214–1222. doi:10.1016/j.mayocp.2017.02.018
Pfau T, Simons V, Rombach N, Stubbs N, Weller R. Effect of a 4-week elastic resistance band training regimen on back kinematics in horses trotting in-hand and on the lunge. Equine Vet J. 2017;49(6):829–835. doi:10.1111/evj.12690
Ursini T, Shaw K, Levine D, Richards J, Adair HS. Electromyography of the multifidus muscle in horses trotting during therapeutic exercises. Front Vet Sci. 2022;9:844776. doi:10.3389/fvets.2022.844776
Miller MA, Croft LB, Belanger AR, et al. Prevalence of metabolic syndrome in retired National Football League players. Am J Cardiol. 2008;101(9):1281–1284. doi:10.1016/j.amjcard.2007.12.029
Nostell K, Lindåse S, Edberg H, Bröjer J. The effect of insulin infusion on heart rate and systemic blood pressure in horses with equine metabolic syndrome. Equine Vet J. 2019;51(6):733–737. doi:10.1111/evj.13110
Ali AT. Polycystic ovary syndrome and metabolic syndrome. Ceska Gynekol. 2015;80(4):279–289.
Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril. 2017;107(4):840–847. doi:10.1016/j.fertnstert.2017.01.017
Sessions-Bresnahan DR, Schauer KL, Heuberger AL, Carnevale EM. Effect of obesity on the preovulatory follicle and lipid fingerprint of equine oocytes. Biol Reprod. 2016;94(1):15. doi:10.1095/biolreprod.115.130187
Sessions-Bresnahan DR, Heuberger AL, Carnevale EM. Obesity in mares promotes uterine inflammation and alters embryo lipid fingerprints and homeostasis. Biol Reprod. 2018;99(4):761–772. doi:10.1093/biolre/ioy107
Burns TA. Effects of common equine endocrine diseases on reproduction. Vet Clin North Am Equine Pract. 2016;32(3):435–449. doi:10.1016/j.cveq.2016.07.005
Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014;94(4):1027–1076. doi:10.1152/physrev.00029.2013
Robles M, Hammer C, Staniar B, Chavatte-Palmer P. Nutrition of broodmares. Vet Clin North Am Equine Pract. 2021;37(1):177–205. doi:10.1016/j.cveq.2021.01.001
Peugnet P, Robles M, Wimel L, Tarrade A, Chavatte-Palmer P. Management of the pregnant mare and long-term consequences on the offspring. Theriogenology. 2016;86(1):99–109. doi:10.1016/j.theriogenology.2016.01.028
Robles M, Gautier C, Mendoza L, et al. Maternal nutrition during pregnancy affects testicular and bone development, glucose metabolism and response to overnutrition in weaned horses up to two years. PLoS One. 2017;12(1):e0169295. doi:10.1371/journal.pone.0169295
Thorson JF, Karren BJ, Bauer ML, Cavinder CA, Coverdale JA, Hammer CJ. Effect of selenium supplementation and plane of nutrition on mares and their foals: foaling data. J Anim Sci. 2010;88(3):982–990. doi:10.2527/jas.2008-1646
Gorgal R, Gonçalves E, Barros M, et al. Gestational diabetes mellitus: a risk factor for non-elective cesarean section. J Obstet Gynaecol Res. 2012;38(1):154–159. doi:10.1111/j.1447-0756.2011.01659.x
Daskalakis G, Marinopoulos S, Krielesi V, et al. Placental pathology in women with gestational diabetes. Acta Obstet Gynecol Scand. 2008;87(4):403–407. doi:10.1080/00016340801908783
Coverdale JA, Hammer CJ, Walter KW. Horse species symposium: nutritional programming and the impact on mare and foal performance. J Anim Sci. 2015;93(7):3261 73267. doi:10.2527/jas.2015-9057
Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes (Lond). 2008;32(suppl 7):S62–S71. doi:10.1038/ijo.2008.240
Norton EM, Schultz NE, Rendahl AK, et al. Heritability of metabolic traits associated with equine metabolic syndrome in Welsh ponies and Morgan horses. Equine Vet J. 2019;51(4):475–480. doi:10.1111/evj.13053
Lewis SL, Holl HM, Streeter C, et al. Genomewide association study reveals a risk locus for equine metabolic syndrome in the Arabian horse. J Anim Sci. 2017;95(3):1071–1079. doi:10.2527/jas.2016.1221
Norton EM, Avila F, Schultz NE, Mickelson JR, Geor RJ, McCue ME. Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits in ponies. J Vet Intern Med. 2019;33(2):942–952. doi:10.1111/jvim.15403
Cash CM, Fitzgerald DM, Spence RJ, de Laat MA. Preliminary analysis of the FAM174A gene suggests it lacks a strong association with equine metabolic syndrome in ponies. Domest Anim Endocrinol. 2020;72:106439. doi:10.1016/j.domaniend.2020.106439
Roy MM, Norton EM, Rendahl AK, et al. Assessment of the FAM174A 11G allele as a risk allele for equine metabolic syndrome. Anim Genet. 2020;51(4):607–610. doi:10.1111/age.12952
Norton E, Schultz N, Geor R, McFarlane D, Mickelson J, McCue M. Genome-wide association analyses of equine metabolic syndrome phenotypes in welsh ponies and morgan horses. Genes (Basel). 2019;10(11):893. doi:10.3390/genes10110893
Schaefer RJ, Cullen J, Manfredi J, McCue M. Functional contexts of adipose and gluteal muscle tissue gene co-expression networks in the domestic horse. Integr Comp Biol. 2020:icaa134. doi:10.1093/icb/icaa134
Delarocque J, Reiche DB, Meier AD, Warnken T, Feige K, Sillence MN. Metabolic profile distinguishes laminitis-susceptible and -resistant ponies before and after feeding a high sugar diet. BMC Vet Res. 2021;17(1):56. doi:10.1186/s12917-021-02763-7
Jacob SI, Murray KJ, Rendahl AK, Geor RJ, Schultz NE, McCue ME. Metabolic perturbations in Welsh Ponies with insulin dysregulation, obesity, and laminitis. J Vet Intern Med. 2018;32(3):1215–1233. doi:10.1111/jvim.15095
Patterson Rosa L, Mallicote MF, Long MT, Brooks SA. Metabogenomics reveals four candidate regions involved in the pathophysiology of Equine Metabolic Syndrome. Mol Cell Probes. 2020;53:101620. doi:10.1016/j.mcp.2020.101620
Rexroad C, Vallet J, Matukumalli LK, et al. Genome to phenome: improving animal health, production, and well-being–a new USDA blueprint for animal genome research 2018–2027. Front Genet. 2019;10:327. doi:10.3389/fgene.2019.00327
Elliott HR, Sharp GC, Relton CL, Lawlor DA. Epigenetics and gestational diabetes: a review of epigenetic epidemiology studies and their use to explore epigenetic mediation and improve prediction. Diabetologia. 2019;62(12):2171–2178. doi:10.1007/s00125-019-05011-8
Allard C, Desgagné V, Patenaude J, et al. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics. 2015;10(4):342–351. doi:10.1080/15592294.2015.1029700
Zhang A, Sun H, Wang X. Serum metabolomics as a novel diagnostic approach for disease: a systematic review. Anal Bioanal Chem. 2012;404(4):1239–1245. doi:10.1007/s00216-012-6117-1
Batch BC, Shah SH, Newgard CB, et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism. 2013;62(7):961–969. doi:10.1016/j.metabol.2013.01.007
Menni C, Fauman E, Erte I, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013;62(12):4270–4276. doi:10.2337/db13-0570
Walford GA, Davis J, Warner AS, et al. Branched chain and aromatic amino acids change acutely following two medical therapies for type 2 diabetes mellitus. Metabolism. 2013;62(12):1772–1778. doi:10.1016/j.metabol.2013.07.003
Huffman KM, Shah SH, Stevens RD, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32(9):1678–1683. doi:10.2337/dc08-2075
Chen Q, Wang W, Xia MF, et al. Identification of circulating sphingosine kinase-related metabolites for prediction of type 2 diabetes. J Transl Med. 2021;19(1):393. doi:10.1186/s12967-021-03066-z
Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639–648. doi:10.2337/db12-0495
Milburn MV, Lawton KA. Application of metabolomics to diagnosis of insulin resistance. Annu Rev Med. 2013;64:291–305. doi:10.1146/annurev-med-061511-134747
Gall WE, Beebe K, Lawton KA, et al. Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One. 2010;5(5):e10883. doi:10.1371/journal.pone.0010883
Ho JE, Larson MG, Vasan RS, et al. Metabolite profiles during oral glucose challenge. Diabetes. 2013;62(8):2689–2698. doi:10.2337/db12-0754
Bain JR, Muehlbauer MJ. Metabolomics reveals unexpected responses to oral glucose. Diabetes. 2013;62(8):2651–2653. doi:10.2337/db13-0605
Coleman MC, Whitfield-Cargile CM, Madrigal RG, Cohen ND. Comparison of the microbiome, metabolome, and lipidome of obese and non-obese horses. PLoS One. 2019;14(4):e0215918. doi:10.1371/journal.pone.0215918
Klein DJ, Anthony TG, McKeever KH. Metabolomics in equine sport and exercise. J Anim Physiol Anim Nutr (Berl). 2021;105(1):140–148. doi:10.1111/jpn.13384
Klein DJ, McKeever KH, Mirek ET, Anthony TG. Metabolomic response of equine skeletal muscle to acute fatiguing exercise and training. Front Physiol. 2020;11:110. doi:10.3389/fphys.2020.00110
Savikj M, Stocks B, Sato S, et al. Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients–a randomized crossover trial. Metabolism. 2022;135:155268. doi:10.1016/j.metabol.2022.155268
Mancilla R, Brouwers B, Schrauwen-Hinderling VB, Hesselink MKC, Hoeks J, Schrauwen P. Exercise training elicits superior metabolic effects when performed in the afternoon compared to morning in metabolically compromised humans. Physiol Rep. 2021;8(24):e14669. doi:10.14814/phy2.14669
Stefaniuk M, Ropka-Molik K. RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J Appl Genet. 2016;57(2):199–206. doi:10.1007/s13353-015-0320-7
Manfredi JM. Identifying Breed Differences in Insulin Dynamics, Skeletal Muscle and Adipose Tissue Histology, and Gene Expression. Michigan State University; 2016.
Ropka-Molik K, Stefaniuk-Szmukier M, Żukowski K, Piórkowska K, Gurgul A, Bugno-Poniewierska M. Transcriptome profiling of Arabian horse blood during training regimens. BMC Genet. 2017;18(1):31. doi:10.1186/s12863-017-0499-1
Kogelman LJ, Fu J, Franke L, et al. Inter-tissue gene co-expression networks between metabolically healthy and unhealthy obese individuals. PLoS One. 2016;11(12):e0167519. doi:10.1371/journal.pone.0167519
Pennington PM, Splan RK, Jacobs RD, et al. Influence of metabolic status and diet on early pregnant equine histotroph proteome: preliminary findings. J Equine Vet Sci. 2020;88:102938. doi:10.1016/j.jevs.2020.102938
Henry ML, Velez-Irizarry D, Pagan JD, Sordillo L, Gandy J, Valberg SJ. The impact of N-acetyl cysteine and coenzyme Q10 supplementation on skeletal muscle antioxidants and proteome in fit thoroughbred horses. Antioxidants (Basel). 2021;10(11):1739. doi:10.3390/antiox10111739
Peffers MJ, Beynon RJ, Clegg PD. Absolute quantification of selected proteins in the human osteoarthritic secretome. Int J Mol Sci. 2013;14(10):20658–20681. doi:10.3390/ijms141020658
Daugaard JR, Richter EA. Relationship between muscle fibre composition, glucose transporter protein 4 and exercise training: possible consequences in non-insulin-dependent diabetes mellitus. Acta Physiol Scand. 2001;171(3):267–276. doi:10.1046/j.1365-201x.2001.00829.x
Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016;31(4):283–293. doi:10.1152/physiol.00041.2015
Binvignat M, Sokol H, Mariotti-Ferrandiz E, Berenbaum F, Sellam J. Osteoarthritis and gut microbiome. Joint Bone Spine. 2021;88(5):105203. doi:10.1016/j.jbspin.2021.105203
Dougal K, Harris PA, Edwards A, et al. A comparison of the microbiome and the metabolome of different regions of the equine hindgut. FEMS Microbiol Ecol. 2012;82(3):642–652. doi:10.1111/j.1574-6941.2012.01441.x
Dougal K, de la Fuente G, Harris PA, et al. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing. PLoS One. 2014;9(2):e87424. doi:10.1371/journal.pone.0087424
Costa MC, Weese JS. Understanding the intestinal microbiome in health and disease. Vet Clin North Am Equine Pract. 2018;34(1):1–12. doi:10.1016/j.cveq.2017.11.005
Fernandes KA, Kittelmann S, Rogers CW, et al. Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change. PLoS One. 2014;9(11):e112846. doi:10.1371/journal.pone.0112846
Elzinga SE, Weese JS, Adams AA. Comparison of the fecal microbiota in horses with equine metabolic syndrome and metabolically normal controls fed a similar diet. J Equine Vet Sci. 2016;44:9–16.
Advertisement