Advertisement

Effect of a ventral slot procedure and of smooth or positive-profile threaded pins with polymethylmethacrylate fixation on intervertebral biomechanics at treated and adjacent canine cervical vertebral motion units

View More View Less
  • 1 Veterinary Medical Teaching Hospital, University of California, Davis, CA 95616.
  • | 2 JD Wheat Veterinary Orthopedic Research Laboratory, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616.
  • | 3 JD Wheat Veterinary Orthopedic Research Laboratory, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616.
  • | 4 Departments of Surgical and Radiological Sciences, University of California, Davis, CA 95616.
  • | 5 Department of Surgical and Radiological Sciences, University of California, Davis, CA 95616.
  • | 6 Departments of Exercise Biology, University of California, Davis, CA 95616.

Abstract

Objective—To investigate the biomechanics of cervical vertebral motion units (VMUs) before and after a ventral slot procedure and after subsequent pin-polymethylmethacrylate (pin-PMMA) fixation and to assess the use of smooth and positive-profile threaded (PPT) pins in pin-PMMA fixation and intravertebral pin placement.

Sample Population—Cervical portions (C3 through C6 vertebrae) of 14 cadaveric canine vertebral columns.

Procedure—Flexion and extension bending moments were applied to specimens before and after creation of a ventral slot across the C4-C5 intervertebral space and after subsequent smooth or PPT pin-PMMA fixation at that site. Data for the C3-C4, C4-C5, and C5-C6 VMUs were compared among treatments and between pin types, and pin protrusion was compared between pin types.

Results—Compared with values in intact specimens, ventral slot treatment increased neutral zone range of motion (NZ-ROM) by 98% at the treated VMUs and appeared to decrease overall ROM at adjacent VMUs; pin-PMMA fixation decreased NZ-ROM by 92% at the treated VMUs and increased overall NZ-ROM by 19% to 24% at adjacent VMUs. Specimens fixed with PPT pins were 82% (flexion) and 80% (extension) stiffer than smooth–pin-fixed specimens. Overall, 41% of pins protruded into foramina; PPT pins were more likely to protrude into transverse foramina.

Conclusions and Clinical Relevance—Results indicated that fixation of a cervical VMU alters the biomechanics of adjacent VMUs and may contribute to degeneration of adjacent intervertebral disks. Use of threaded pins may lower the incidence of pin loosening and implant failure but enhances the likelihood of transverse foramina penetration. ( Am J Vet Res 2005;66:678–687)

Abstract

Objective—To investigate the biomechanics of cervical vertebral motion units (VMUs) before and after a ventral slot procedure and after subsequent pin-polymethylmethacrylate (pin-PMMA) fixation and to assess the use of smooth and positive-profile threaded (PPT) pins in pin-PMMA fixation and intravertebral pin placement.

Sample Population—Cervical portions (C3 through C6 vertebrae) of 14 cadaveric canine vertebral columns.

Procedure—Flexion and extension bending moments were applied to specimens before and after creation of a ventral slot across the C4-C5 intervertebral space and after subsequent smooth or PPT pin-PMMA fixation at that site. Data for the C3-C4, C4-C5, and C5-C6 VMUs were compared among treatments and between pin types, and pin protrusion was compared between pin types.

Results—Compared with values in intact specimens, ventral slot treatment increased neutral zone range of motion (NZ-ROM) by 98% at the treated VMUs and appeared to decrease overall ROM at adjacent VMUs; pin-PMMA fixation decreased NZ-ROM by 92% at the treated VMUs and increased overall NZ-ROM by 19% to 24% at adjacent VMUs. Specimens fixed with PPT pins were 82% (flexion) and 80% (extension) stiffer than smooth–pin-fixed specimens. Overall, 41% of pins protruded into foramina; PPT pins were more likely to protrude into transverse foramina.

Conclusions and Clinical Relevance—Results indicated that fixation of a cervical VMU alters the biomechanics of adjacent VMUs and may contribute to degeneration of adjacent intervertebral disks. Use of threaded pins may lower the incidence of pin loosening and implant failure but enhances the likelihood of transverse foramina penetration. ( Am J Vet Res 2005;66:678–687)