Computer-assisted kinematic evaluation of induced compensatory movements resembling lameness in horses trotting on a treadmill

Gal Kelmer Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Gal Kelmer in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Kevin G. Keegan Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Kevin G. Keegan in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Joanne Kramer Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Joanne Kramer in
Current site
Google Scholar
PubMed
Close
 DVM
,
David A. Wilson Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by David A. Wilson in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Frank P. Pai Department of Mechanical and Aerospace Engineering, College of Engineering, University of Missouri, Columbia, MO 65211.

Search for other papers by Frank P. Pai in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Prableen Singh Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65211.
Present address is Newton Medical Center, 600 Medical Center Dr, Newton, KS 67114-0308.

Search for other papers by Prableen Singh in
Current site
Google Scholar
PubMed
Close
 MD

Abstract

Objective—To characterize compensatory movements of the head and pelvis that resemble lameness in horses.

Animals—17 adult horses.

Procedure—Kinematic evaluations were performed while horses trotted on a treadmill before and after shoe-induced lameness. Lameness was quantified and the affected limb determined by algorithms that measured asymmetry in vertical movement of the head and pelvis. Induced primary lameness and compensatory movements resembling lameness were assessed by the Friedman test. Association between induced lameness and compensatory movements was examined by regression analysis.

Results—Compensatory movements resembling lameness in the ipsilateral forelimb were seen with induced lameness of a hind limb. There was less downward and less upward head movement during and after the stance phase of the ipsilateral forelimb. Doubling the severity of lameness in the hind limb increased severity of the compensatory movements in the ipsilateral forelimb by 50%. Compensatory movements resembling lameness of the hind limb were seen after induced lameness in a forelimb. There was less upward movement of the pelvis after the stance phase of the contralateral hind limb and, to a lesser extent, less downward movement of the pelvis during the stance phase of the ipsilateral hind limb. Doubling the severity of lameness in the forelimb increased compensatory movements of the contralateral hind limb by 5%.

Conclusions and Clinical Relevance—Induced lameness in a hind limb causes prominent compensatory movements resembling lameness in the ipsilateral forelimb. Induced lameness in a forelimb causes slight compensatory movements resembling lameness in the ipsilateral and contralateral hind limbs. (Am J Vet Res 2005;66:646–655)

Abstract

Objective—To characterize compensatory movements of the head and pelvis that resemble lameness in horses.

Animals—17 adult horses.

Procedure—Kinematic evaluations were performed while horses trotted on a treadmill before and after shoe-induced lameness. Lameness was quantified and the affected limb determined by algorithms that measured asymmetry in vertical movement of the head and pelvis. Induced primary lameness and compensatory movements resembling lameness were assessed by the Friedman test. Association between induced lameness and compensatory movements was examined by regression analysis.

Results—Compensatory movements resembling lameness in the ipsilateral forelimb were seen with induced lameness of a hind limb. There was less downward and less upward head movement during and after the stance phase of the ipsilateral forelimb. Doubling the severity of lameness in the hind limb increased severity of the compensatory movements in the ipsilateral forelimb by 50%. Compensatory movements resembling lameness of the hind limb were seen after induced lameness in a forelimb. There was less upward movement of the pelvis after the stance phase of the contralateral hind limb and, to a lesser extent, less downward movement of the pelvis during the stance phase of the ipsilateral hind limb. Doubling the severity of lameness in the forelimb increased compensatory movements of the contralateral hind limb by 5%.

Conclusions and Clinical Relevance—Induced lameness in a hind limb causes prominent compensatory movements resembling lameness in the ipsilateral forelimb. Induced lameness in a forelimb causes slight compensatory movements resembling lameness in the ipsilateral and contralateral hind limbs. (Am J Vet Res 2005;66:646–655)

All Time Past Year Past 30 Days
Abstract Views 37 0 0
Full Text Views 1901 1530 60
PDF Downloads 383 126 10
Advertisement