Effects of CD28 blockade on subsets of naïve T cells in cats

Lillian R. Aronson Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010.

Search for other papers by Lillian R. Aronson in
Current site
Google Scholar
PubMed
Close
 VMD
,
Kenneth J. Drobatz Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010.

Search for other papers by Kenneth J. Drobatz in
Current site
Google Scholar
PubMed
Close
 DVM
,
Christopher A. Hunter Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010.

Search for other papers by Christopher A. Hunter in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Nicola Mason Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010.

Search for other papers by Nicola Mason in
Current site
Google Scholar
PubMed
Close
 BVet Med, PhD

Click on author name to view affiliation information

Abstract

Objective—To determine whether human CTLA4-Ig ([hu]CTLA4-Ig) inhibits costimulation-dependent lymphocyte proliferation in vitro, compare the effects of (hu)CTLA4-Ig with cyclosporine and steroids on CD4+ and CD8+ T-cell lymphocyte proliferation, and determine whether memory T-cell function remains intact in the presence of (hu)CTLA4-Ig.

Animals—29 cats.

Procedure—Peripheral blood mononuclear cells (PBMCs) were stimulated with concanavalin A (costimulation- dependent mitogen) or phorbol 12-myristate 13-acetate and ionomycin (costimulation independent mitogens) alone or in the presence of (hu)CTLA4-Ig, cyclosporine, or dexamethasone; effects of these treatments on lymphocyte proliferation were assessed by incorporation of thymidine labeled with tritium or flow cytometry. Antigen-specific proliferation was determined by stimulating PBMCs from 2 healthy cats seropositive for Toxoplasma gondii with soluble Toxoplasma antigen alone or in the presence of (hu)CTLA4-Ig or cyclosporine.

Results—(hu)CTLA4-Ig inhibited costimulationdependent lymphocyte proliferation in vitro but had no effect on costimulation-independent lymphocyte proliferation. Compared with mitogen alone, (hu)CTLA4-Ig caused a significant decrease in responder frequency and proliferative capacity of CD4+ T cells; however, the effect on CD8+ T cells was not significant. Cyclosporine alone or with dexamethasone had a significantly greater suppressive effect on responder frequency and proliferative capacity of CD4+ and CD8+ T cells, compared with (hu)CTLA4-Ig. Compared with cyclosporine, (hu)CTLA4-Ig appeared to have a sparing effect on antigen-specific proliferation of memory CD4+ and CD8+ T cells.

Conclusions and Clinical Relevance—(hu)CTLA4-Ig selectively inhibited costimulation-dependent proliferation of lymphocytes in vitro and had a sparing effect on antigen-specific proliferation of memory cells. The specificity of its mechanism of action suggests that (hu)CTLA4-Ig may prevent allograft rejection but leave memory responses to previously encountered antigens intact. (Am J Vet Res 2005;66:483–492)

Abstract

Objective—To determine whether human CTLA4-Ig ([hu]CTLA4-Ig) inhibits costimulation-dependent lymphocyte proliferation in vitro, compare the effects of (hu)CTLA4-Ig with cyclosporine and steroids on CD4+ and CD8+ T-cell lymphocyte proliferation, and determine whether memory T-cell function remains intact in the presence of (hu)CTLA4-Ig.

Animals—29 cats.

Procedure—Peripheral blood mononuclear cells (PBMCs) were stimulated with concanavalin A (costimulation- dependent mitogen) or phorbol 12-myristate 13-acetate and ionomycin (costimulation independent mitogens) alone or in the presence of (hu)CTLA4-Ig, cyclosporine, or dexamethasone; effects of these treatments on lymphocyte proliferation were assessed by incorporation of thymidine labeled with tritium or flow cytometry. Antigen-specific proliferation was determined by stimulating PBMCs from 2 healthy cats seropositive for Toxoplasma gondii with soluble Toxoplasma antigen alone or in the presence of (hu)CTLA4-Ig or cyclosporine.

Results—(hu)CTLA4-Ig inhibited costimulationdependent lymphocyte proliferation in vitro but had no effect on costimulation-independent lymphocyte proliferation. Compared with mitogen alone, (hu)CTLA4-Ig caused a significant decrease in responder frequency and proliferative capacity of CD4+ T cells; however, the effect on CD8+ T cells was not significant. Cyclosporine alone or with dexamethasone had a significantly greater suppressive effect on responder frequency and proliferative capacity of CD4+ and CD8+ T cells, compared with (hu)CTLA4-Ig. Compared with cyclosporine, (hu)CTLA4-Ig appeared to have a sparing effect on antigen-specific proliferation of memory CD4+ and CD8+ T cells.

Conclusions and Clinical Relevance—(hu)CTLA4-Ig selectively inhibited costimulation-dependent proliferation of lymphocytes in vitro and had a sparing effect on antigen-specific proliferation of memory cells. The specificity of its mechanism of action suggests that (hu)CTLA4-Ig may prevent allograft rejection but leave memory responses to previously encountered antigens intact. (Am J Vet Res 2005;66:483–492)

All Time Past Year Past 30 Days
Abstract Views 18 0 0
Full Text Views 200 107 40
PDF Downloads 105 73 6
Advertisement