Advertisement

Effects of insulin-like growth factor-II on the mitogenic and metabolic activities of equine articular cartilage with and without interleukin 1-β

View More View Less
  • 1 Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.
  • | 2 Present address is PO Box 32, Unionville, PA 19375.
  • | 3 Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.
  • | 4 Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.

Abstract

Objective—To investigate the effects of insulin-like growth factor-II (IGF-II) on DNA and glycosaminoglycan (GAG) synthesis and the expression of matrix-related genes in equine articular cartilage explants and chondrocytes, respectively, with and without interleukin 1-β (IL1-β).

Sample Population—Articular cartilage from 12 adult horses.

Procedure—Articular cartilage was incubated in standard media with and without equine IL1-β (10 ng/mL) containing various concentrations of IGF-II for 72 hours. Synthesis of DNA and GAG was determined by incorporation of thymidine labeled with radioactive hydrogen (3H) and sulfate labeled with radioactive sulfur (35S), respectively. Total GAG content of the explants and spent media was determined by use of the 1,9-dimethylmethylene blue assay. Northern blots of RNA from cultured equine articular cartilage chondrocytes were hybridized with cDNA of major matrix molecules.

Results—Insulin-like growth factor-II stimulated DNA and GAG synthesis at concentrations of 25 and 50 ng/mL, respectively. In cartilage explants conditioned with IL1-β, IGF-II stimulated DNA and GAG synthesis at concentrations of 500 and 50 ng/mL, respectively. Insulin-like growth factor-II had no effect on total GAG content as determined by the 1,9-dimethylmethylene blue assay. No specific effects on steady-state levels of messenger RNAs were observed.

Conclusions and Clinical Relevance—Insulin-like growth factor-II stimulated DNA and GAG synthesis in equine adult cartilage and may have potential application in vivo. (Am J Vet Res 2004;65:238–244)

Abstract

Objective—To investigate the effects of insulin-like growth factor-II (IGF-II) on DNA and glycosaminoglycan (GAG) synthesis and the expression of matrix-related genes in equine articular cartilage explants and chondrocytes, respectively, with and without interleukin 1-β (IL1-β).

Sample Population—Articular cartilage from 12 adult horses.

Procedure—Articular cartilage was incubated in standard media with and without equine IL1-β (10 ng/mL) containing various concentrations of IGF-II for 72 hours. Synthesis of DNA and GAG was determined by incorporation of thymidine labeled with radioactive hydrogen (3H) and sulfate labeled with radioactive sulfur (35S), respectively. Total GAG content of the explants and spent media was determined by use of the 1,9-dimethylmethylene blue assay. Northern blots of RNA from cultured equine articular cartilage chondrocytes were hybridized with cDNA of major matrix molecules.

Results—Insulin-like growth factor-II stimulated DNA and GAG synthesis at concentrations of 25 and 50 ng/mL, respectively. In cartilage explants conditioned with IL1-β, IGF-II stimulated DNA and GAG synthesis at concentrations of 500 and 50 ng/mL, respectively. Insulin-like growth factor-II had no effect on total GAG content as determined by the 1,9-dimethylmethylene blue assay. No specific effects on steady-state levels of messenger RNAs were observed.

Conclusions and Clinical Relevance—Insulin-like growth factor-II stimulated DNA and GAG synthesis in equine adult cartilage and may have potential application in vivo. (Am J Vet Res 2004;65:238–244)