Assessment of the effects of epinephrine and insulin on plasma and serum biochemical variables in llamas and alpacas

Christopher K. Cebra Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4802.

Search for other papers by Christopher K. Cebra in
Current site
Google Scholar
PubMed
Close
 VMD, MS
and
Susan J. Tornquist Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4802.

Search for other papers by Susan J. Tornquist in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To describe the metabolic effects of epinephrine administration in New World camelids and investigate whether these effects are influenced by administration of insulin.

Animals—6 llamas and 8 alpacas (all adult castrated males).

Procedure—Prior to each experiment, food was withheld from camelids for 8 hours. On each of 2 consecutive days, alpacas were administered epinephrine (10 mg/kg, IM; time 0); alpacas were randomly assigned to receive regular insulin (0.2 U/kg, IV) immediately after epinephrine administration on one of those days. In llamas, the experiment was performed once after administration of epinephrine only. At 0, 30, 60, 90, 120, 150, 180, 210, and 240 minutes after treatment, blood samples were collected and several serum or plasma biochemical variables were assessed; in addition, plasma samples from llamas were assessed for insulin concentrations. Data were compared between days (alpacas only) and between time points.

Results—Administration of epinephrine induced mobilization of glucose, triglycerides, nonesterified fatty acids, and β-hydroxybutyrate. A small increase in endogenous insulin concentration was detected in epinephrine-treated llamas, compared with baseline values. Overall, insulin administration decreased, negated, or delayed the epinephrine-associated increases in serum or plasma concentrations of circulating energy substrates, except that it augmented the epinephrine-associated increase in concentration of triglycerides.

Conclusions and Clinical Relevance—Epinephrine appeared to mobilize energy substrates in camelids and hence may be involved in the pathogenesis of disorders of glucose and fat metabolism. Insulin appeared to antagonize most of these effects, and its administration may have therapeutic value in camelids. (Am J Vet Res 2004;65:1692–1696)

Abstract

Objective—To describe the metabolic effects of epinephrine administration in New World camelids and investigate whether these effects are influenced by administration of insulin.

Animals—6 llamas and 8 alpacas (all adult castrated males).

Procedure—Prior to each experiment, food was withheld from camelids for 8 hours. On each of 2 consecutive days, alpacas were administered epinephrine (10 mg/kg, IM; time 0); alpacas were randomly assigned to receive regular insulin (0.2 U/kg, IV) immediately after epinephrine administration on one of those days. In llamas, the experiment was performed once after administration of epinephrine only. At 0, 30, 60, 90, 120, 150, 180, 210, and 240 minutes after treatment, blood samples were collected and several serum or plasma biochemical variables were assessed; in addition, plasma samples from llamas were assessed for insulin concentrations. Data were compared between days (alpacas only) and between time points.

Results—Administration of epinephrine induced mobilization of glucose, triglycerides, nonesterified fatty acids, and β-hydroxybutyrate. A small increase in endogenous insulin concentration was detected in epinephrine-treated llamas, compared with baseline values. Overall, insulin administration decreased, negated, or delayed the epinephrine-associated increases in serum or plasma concentrations of circulating energy substrates, except that it augmented the epinephrine-associated increase in concentration of triglycerides.

Conclusions and Clinical Relevance—Epinephrine appeared to mobilize energy substrates in camelids and hence may be involved in the pathogenesis of disorders of glucose and fat metabolism. Insulin appeared to antagonize most of these effects, and its administration may have therapeutic value in camelids. (Am J Vet Res 2004;65:1692–1696)

Advertisement