Advertisement

Effects of obesity on lipid profiles in neutered male and female cats

Margarethe HoenigDepartment of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Margarethe Hoenig in
Current site
Google Scholar
PubMed
Close
 Dr med vet, PhD
,
Caroline WilkinsDepartment of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Caroline Wilkins in
Current site
Google Scholar
PubMed
Close
 BS
,
Jennifer C. HolsonDepartment of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Jennifer C. Holson in
Current site
Google Scholar
PubMed
Close
 BS
, and
Duncan C. FergusonDepartment of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Duncan C. Ferguson in
Current site
Google Scholar
PubMed
Close
 VMD, PhD

Abstract

Objective—To examine whether obese cats, compared with lean cats, have alterations in lipoprotein metabolism that might lead to a decrease in glucose metabolism and insulin secretion.

Animals—10 lean and 10 obese adults cats (5 neutered males and 5 neutered females each).

Procedure—Intravenous glucose tolerance tests with measurements of serum glucose, insulin, and nonesterified fatty acid (NEFA) concentrations were performed. Lipoprotein fractions were examined in serum by isopycnic density gradient ultracentrifugation.

Results—Obese cats had insulin resistance. Plasma triglyceride and cholesterol concentrations were significantly increased in obese cats, compared with lean cats. Very low density lipoprotein (VLDL) concentrations were increased in obese cats, compared with lean cats; however, the composition of various fractions remained unchanged between obese and lean cats, indicating greater synthesis and catabolism of VLDL in obese cats. Serum high density lipoprotein (HDL) cholesterol concentrations were increased in obese cats, compared with lean cats. Serum NEFA concentrations were only significantly different between obese and lean cats when separated by sex; obese male cats had higher baseline serum NEFA concentrations and greater NEFA suppression in response to insulin, compared with lean male cats.

Conclusions and Clinical Relevance—Lipid metabolism changes in obese cats, compared with lean cats. The increase in VLDL turnover in obese cats might contribute to insulin resistance of glucose metabolism, whereas the increase in serum HDL cholesterol concentration might reflect a protective effect against atherosclerosis in obese cats. (Am J Vet Res 2003;64:299–303)

Abstract

Objective—To examine whether obese cats, compared with lean cats, have alterations in lipoprotein metabolism that might lead to a decrease in glucose metabolism and insulin secretion.

Animals—10 lean and 10 obese adults cats (5 neutered males and 5 neutered females each).

Procedure—Intravenous glucose tolerance tests with measurements of serum glucose, insulin, and nonesterified fatty acid (NEFA) concentrations were performed. Lipoprotein fractions were examined in serum by isopycnic density gradient ultracentrifugation.

Results—Obese cats had insulin resistance. Plasma triglyceride and cholesterol concentrations were significantly increased in obese cats, compared with lean cats. Very low density lipoprotein (VLDL) concentrations were increased in obese cats, compared with lean cats; however, the composition of various fractions remained unchanged between obese and lean cats, indicating greater synthesis and catabolism of VLDL in obese cats. Serum high density lipoprotein (HDL) cholesterol concentrations were increased in obese cats, compared with lean cats. Serum NEFA concentrations were only significantly different between obese and lean cats when separated by sex; obese male cats had higher baseline serum NEFA concentrations and greater NEFA suppression in response to insulin, compared with lean male cats.

Conclusions and Clinical Relevance—Lipid metabolism changes in obese cats, compared with lean cats. The increase in VLDL turnover in obese cats might contribute to insulin resistance of glucose metabolism, whereas the increase in serum HDL cholesterol concentration might reflect a protective effect against atherosclerosis in obese cats. (Am J Vet Res 2003;64:299–303)