Effects of ventilation and isoflurane end-tidal concentration on intracranial and cerebral perfusion pressures in horses

Robert J. Brosnan Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Robert J. Brosnan in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Eugene P. Steffey Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Eugene P. Steffey in
Current site
Google Scholar
PubMed
Close
 VMD, PhD
,
Richard A. LeCouteur Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Richard A. LeCouteur in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD
,
Ayako Imai Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Ayako Imai in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Thomas B. Farver Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Thomas B. Farver in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Gregg D. Kortz Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Gregg D. Kortz in
Current site
Google Scholar
PubMed
Close
 DVM
Full access

Abstract

Objective—To measure the effects of isoflurane end-tidal concentration and mode of ventilation (spontaneous vs controlled) on intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in horses.

Animals—6 adult horses of various breeds.

Procedure—Anesthesia was induced and maintained with isoflurane in O2 in 6 healthy, unmedicated, adult horses. Using a subarachnoid strain gauge transducer, ICP was measured. Blood gas tensions and carotid artery pressures also were measured. Four isoflurane doses were studied, corresponding to the following multiples of the minimum alveolar concentration (MAC): 1.0 MAC, 1.2 MAC, 1.4 MAC, and 1.6 MAC. Data were collected during controlled ventilation and spontaneous ventilation at each dose.

Results—Increasing isoflurane end-tidal concentration induced significant dose-dependent decreases in mean arterial pressure (MAP) and CPP but no change in ICP. Hypercapnic spontaneous ventilation caused significant increases in MAP and ICP, compared with normocapnic controlled ventilation; no change in CPP was observed.

Conclusion and Clinical Relevance—Hypercapnia likely increases cerebral blood flow (CBF) by maintaining CPP in the face of presumed cerebral vasodilation in healthy anesthetized horses. The effect of isoflurane dose on CBF, however, remains unresolved because it depends on the opposinginfluences of a decrease in CCP and cerebral vasodilation. (Am J Vet Res 2003;64:21–25)

All Time Past Year Past 30 Days
Abstract Views 39 0 0
Full Text Views 2076 1787 18
PDF Downloads 152 57 1
Advertisement