Advertisement

Direct measurement of intracranial pressure in adult horses

Robert J. BrosnanDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Robert J. Brosnan in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Richard A. LeCouteurDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Richard A. LeCouteur in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD
,
Eugene P. SteffeyDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Eugene P. Steffey in
Current site
Google Scholar
PubMed
Close
 VMD, PhD
,
Ayako ImaiDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Ayako Imai in
Current site
Google Scholar
PubMed
Close
 DVM, MS
, and
Gregg D. KortzDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Gregg D. Kortz in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

Objective—To develop a method for surgical placement of a commercial microsensor intracranial pressure (ICP) transducer and to characterize normal ICP and cerebral perfusion pressures (CPP) in conscious adult horses.

Animals—6 healthy castrated male adult horses (1 Holsteiner, 1 Quarter Horse, and 4 Thoroughbreds).

Procedure—Anesthesia was induced and maintained by use of isoflurane as the sole agent. Catheters were inserted percutaneously into the jugular vein and carotid artery. A microsensor ICP transducer was inserted in the subarachnoid space by means of right parietal craniotomy. The burr hole was then sealed with bone wax, the surgical incision was sutured, and the transducer was secured in place. Measurements were collected 1 hour after horses were able to stand during recovery from anesthesia.

Results—Mean ± SD values for ICP and CPP were 2 ± 4 and 102 ± 26 mm Hg, respectively.

Conclusion and Clinical Relevance—This report describes a relatively facile technique for obtaining direct and accurate ICP measurements for adult horses. The ICP values obtained in this study are within reference ranges established for other species and provide a point of reference for the diagnosis of abnormal ICP in adult horses. (Am J Vet Res 2002;63:1252–1256)

Abstract

Objective—To develop a method for surgical placement of a commercial microsensor intracranial pressure (ICP) transducer and to characterize normal ICP and cerebral perfusion pressures (CPP) in conscious adult horses.

Animals—6 healthy castrated male adult horses (1 Holsteiner, 1 Quarter Horse, and 4 Thoroughbreds).

Procedure—Anesthesia was induced and maintained by use of isoflurane as the sole agent. Catheters were inserted percutaneously into the jugular vein and carotid artery. A microsensor ICP transducer was inserted in the subarachnoid space by means of right parietal craniotomy. The burr hole was then sealed with bone wax, the surgical incision was sutured, and the transducer was secured in place. Measurements were collected 1 hour after horses were able to stand during recovery from anesthesia.

Results—Mean ± SD values for ICP and CPP were 2 ± 4 and 102 ± 26 mm Hg, respectively.

Conclusion and Clinical Relevance—This report describes a relatively facile technique for obtaining direct and accurate ICP measurements for adult horses. The ICP values obtained in this study are within reference ranges established for other species and provide a point of reference for the diagnosis of abnormal ICP in adult horses. (Am J Vet Res 2002;63:1252–1256)