Advertisement

Effects of adenosine on bacterial lipopolysaccharide- and interleukin 1-induced nitric oxide release from equine articular chondrocytes

View More View Less
  • 1 Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616.
  • | 2 Department of Surgery and Radiology, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616.
  • | 3 Department of Surgery and Radiology, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616.

Abstract

Objective—To determine whether adenosine influences the in vitro release of nitric oxide (NO) from differentiated primary equine articular chondrocytes.

Sample Population—Articular cartilage harvested from the metacarpophalangeal and metatarsophalangeal joints of 11 horses (3 to 11 years old) without history or clinical signs of joint disease.

Procedure—Chondrocytes were isolated, plated at a high density (105 cells/well), and treated with adenosine, the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), bradykinin, or other agents that modify secondary messenger pathways alone or in combination with bacterial lipopolysaccharide (LPS) or recombinant human interleukin-1α (rhIL-1α). Nitric oxide release was measured indirectly by use of the Griess reaction and was expressed as µmol of nitrite in the supernatant/µg of protein in the cell layer. Inducible nitric oxide synthase (iNOS) activity was determined by measuring the conversion of radiolabeled arginine to radiolabeled citrulline.

Results—Treatment of chondrocytes with adenosine alone had no significant effect on NO release. However, adenosine and NECA inhibited LPS- and rhIL-1α-induced NO release. This response was mimicked by forskolin, which acts to increase adenylate cyclase activity, but not by the calcium ionophore A23187. Treatment of chondrocytes with phorbol myristate acetate, which acts to increase protein kinase C activity, potentiated LPS-induced NO release. Adenosine treatment also significantly inhibited the LPS-induced increase in iNOS activity.

Conclusions and Clinical Relevance—Adenosine and the nonspecific adenosine receptor agonist NECA inhibited inflammatory mediator-induced release of NO from equine articular chondrocytes. Modulation of adenosine receptor-mediated pathways may offer novel methods for treatment of inflammation in horses with joint disease. (Am J Vet Res 2002;63:204–210)

Abstract

Objective—To determine whether adenosine influences the in vitro release of nitric oxide (NO) from differentiated primary equine articular chondrocytes.

Sample Population—Articular cartilage harvested from the metacarpophalangeal and metatarsophalangeal joints of 11 horses (3 to 11 years old) without history or clinical signs of joint disease.

Procedure—Chondrocytes were isolated, plated at a high density (105 cells/well), and treated with adenosine, the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), bradykinin, or other agents that modify secondary messenger pathways alone or in combination with bacterial lipopolysaccharide (LPS) or recombinant human interleukin-1α (rhIL-1α). Nitric oxide release was measured indirectly by use of the Griess reaction and was expressed as µmol of nitrite in the supernatant/µg of protein in the cell layer. Inducible nitric oxide synthase (iNOS) activity was determined by measuring the conversion of radiolabeled arginine to radiolabeled citrulline.

Results—Treatment of chondrocytes with adenosine alone had no significant effect on NO release. However, adenosine and NECA inhibited LPS- and rhIL-1α-induced NO release. This response was mimicked by forskolin, which acts to increase adenylate cyclase activity, but not by the calcium ionophore A23187. Treatment of chondrocytes with phorbol myristate acetate, which acts to increase protein kinase C activity, potentiated LPS-induced NO release. Adenosine treatment also significantly inhibited the LPS-induced increase in iNOS activity.

Conclusions and Clinical Relevance—Adenosine and the nonspecific adenosine receptor agonist NECA inhibited inflammatory mediator-induced release of NO from equine articular chondrocytes. Modulation of adenosine receptor-mediated pathways may offer novel methods for treatment of inflammation in horses with joint disease. (Am J Vet Res 2002;63:204–210)