Advertisement

Cloning and sequence analysis of the complementary DNA for feline preproparathyroid hormone

Ramiro E. ToribioDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Ramiro E. Toribio in
Current site
Google Scholar
PubMed
Close
 MV, MS, PhD
,
Catherine W. KohnDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Catherine W. Kohn in
Current site
Google Scholar
PubMed
Close
 VMD
,
Dennis J. ChewDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Dennis J. Chew in
Current site
Google Scholar
PubMed
Close
 DVM
,
Charles C. CapenDepartment of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Charles C. Capen in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Thomas J. RosolDepartment of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Thomas J. Rosol in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To clone and sequence the cDNA for feline preproparathyroid hormone (preproPTH) and to compare that sequence with other known parathyroid hormone (PTH) sequences.

Sample Population—Parathyroid glands from 1 healthy cat.

Procedure—A cDNA library was constructed in λ phage from feline parathyroid gland mRNA and screened with a radiolabeled canine PTH probe. Positive clones were sequenced, and nucleic acid and deduced amino acid sequences were analyzed and compared with known preproPTH and PTH sequences.

Result—Screening of approximately 2 X 105 recombinant plaques revealed 3 that hybridized with the canine PTH probe; 2 clones comprised the complete sequence for feline preproPTH. Feline preproPTH cDNA consisted of a 63-base pair (bp) 5'-untranslated region (UTR), a 348-bp coding region, and a 326-bp 3'-UTR. The coding region encoded a 115-amino acid peptide. Mature feline PTH consisted of 84 amino acids. Amino acid sequence analysis revealed that feline PTH was > 83% identical to canine, bovine, swine, equine, human, and macaque PTH and 69, 71, and 44% identical to mouse, rat, and chicken PTH, respectively. Within the region responsible for hormonal activity (amino acids 1 to 34), feline PTH was > 79% identical to other mammalian PTH sequences and 64% identical to the chicken sequence.

Conclusions and Clinical Relevance—The amino acid sequence of PTH is conserved among mammalian species. Knowledge of the cDNA sequence for feline PTH may be useful to investigate disturbances of calcium metabolism and alterations in PTH expression in cats. (Am J Vet Res 2002;63:194–197)

Abstract

Objective—To clone and sequence the cDNA for feline preproparathyroid hormone (preproPTH) and to compare that sequence with other known parathyroid hormone (PTH) sequences.

Sample Population—Parathyroid glands from 1 healthy cat.

Procedure—A cDNA library was constructed in λ phage from feline parathyroid gland mRNA and screened with a radiolabeled canine PTH probe. Positive clones were sequenced, and nucleic acid and deduced amino acid sequences were analyzed and compared with known preproPTH and PTH sequences.

Result—Screening of approximately 2 X 105 recombinant plaques revealed 3 that hybridized with the canine PTH probe; 2 clones comprised the complete sequence for feline preproPTH. Feline preproPTH cDNA consisted of a 63-base pair (bp) 5'-untranslated region (UTR), a 348-bp coding region, and a 326-bp 3'-UTR. The coding region encoded a 115-amino acid peptide. Mature feline PTH consisted of 84 amino acids. Amino acid sequence analysis revealed that feline PTH was > 83% identical to canine, bovine, swine, equine, human, and macaque PTH and 69, 71, and 44% identical to mouse, rat, and chicken PTH, respectively. Within the region responsible for hormonal activity (amino acids 1 to 34), feline PTH was > 79% identical to other mammalian PTH sequences and 64% identical to the chicken sequence.

Conclusions and Clinical Relevance—The amino acid sequence of PTH is conserved among mammalian species. Knowledge of the cDNA sequence for feline PTH may be useful to investigate disturbances of calcium metabolism and alterations in PTH expression in cats. (Am J Vet Res 2002;63:194–197)