In vitro biomechanical study of rotational stabilizers of the canine elbow joint

Kent W. Talcott J.D. Wheat Veterinary Orthopedic Research Laboratory, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.
Present address is Pet Care Veterinary Hospital, 1370 Fulton Rd, Santa Rosa, CA 95401.

Search for other papers by Kent W. Talcott in
Current site
Google Scholar
PubMed
Close
 DVM
,
Kurt S. Schulz J.D. Wheat Veterinary Orthopedic Research Laboratory, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Kurt S. Schulz in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Philip H. Kass J.D. Wheat Veterinary Orthopedic Research Laboratory, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Philip H. Kass in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
David R. Mason J.D. Wheat Veterinary Orthopedic Research Laboratory, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.
Present address is Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011.

Search for other papers by David R. Mason in
Current site
Google Scholar
PubMed
Close
 BvetMed
, and
Susan M. Stover J.D. Wheat Veterinary Orthopedic Research Laboratory, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Susan M. Stover in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To develop a model for measuring rotary stability of the canine elbow joint and to evaluate the relative contribution of the anconeal process (AN), lateral collateral ligament (LCL), and medial collateral ligament (MCL).

Sample Population—18 forelimbs from 12 canine cadavers.

Procedure—Forelimbs were allocated to 3 experimental groups (6 forelimbs/group). Each intact forelimb was placed in extension at an angle of 135° and cycled 50 times from –16° (pronation) to +28° (supination) in a continuous manner at 2.0 Hz. Cycling was repeated following sectioning of the structure of interest (group 1, AN; group 2, LCL; and group 3, MCL). Torque at –12° (pronation) and +18° (supination) was measured for each intact and experimentally sectioned limb. A Student t test was performed to compare torque values obtained from intact verses experimentally sectioned limbs and for comparison with established criteria for differentiation of primary (≥ 33%), secondary (10 to 33%), and tertiary rotational stabilizers (< 10%).

Results—In pronation, the AN was the only primary stabilizer (65%). For supination, the LCL was a primary stabilizer (48%), AN was a secondary stabilizer (24%), and MCL was a tertiary stabilizer (7%).

Conclusions and Clinical Relevance—With the elbow joint in extension at an angle of 135°, the AN is a primary rotational stabilizer in pronation, and the LCL is a primary stabilizer in supination. Disruption of the AN or LCL may affect rotary range of motion or compromise stability of the elbow joint in dogs. (Am J Vet Res 2002;63:1520–1526)

Abstract

Objective—To develop a model for measuring rotary stability of the canine elbow joint and to evaluate the relative contribution of the anconeal process (AN), lateral collateral ligament (LCL), and medial collateral ligament (MCL).

Sample Population—18 forelimbs from 12 canine cadavers.

Procedure—Forelimbs were allocated to 3 experimental groups (6 forelimbs/group). Each intact forelimb was placed in extension at an angle of 135° and cycled 50 times from –16° (pronation) to +28° (supination) in a continuous manner at 2.0 Hz. Cycling was repeated following sectioning of the structure of interest (group 1, AN; group 2, LCL; and group 3, MCL). Torque at –12° (pronation) and +18° (supination) was measured for each intact and experimentally sectioned limb. A Student t test was performed to compare torque values obtained from intact verses experimentally sectioned limbs and for comparison with established criteria for differentiation of primary (≥ 33%), secondary (10 to 33%), and tertiary rotational stabilizers (< 10%).

Results—In pronation, the AN was the only primary stabilizer (65%). For supination, the LCL was a primary stabilizer (48%), AN was a secondary stabilizer (24%), and MCL was a tertiary stabilizer (7%).

Conclusions and Clinical Relevance—With the elbow joint in extension at an angle of 135°, the AN is a primary rotational stabilizer in pronation, and the LCL is a primary stabilizer in supination. Disruption of the AN or LCL may affect rotary range of motion or compromise stability of the elbow joint in dogs. (Am J Vet Res 2002;63:1520–1526)

Advertisement