Effects of carprofen and dexamethasone on canine chondrocytes in a three-dimensional culture model of osteoarthritis

Laura D. Dvorak Comparative Orthopaedic Laboratory, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Laura D. Dvorak in
Current site
Google Scholar
PubMed
Close
 DVM
,
James L. Cook Comparative Orthopaedic Laboratory, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by James L. Cook in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
John M. Kreeger Comparative Orthopaedic Laboratory, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by John M. Kreeger in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Keiichi Kuroki Comparative Orthopaedic Laboratory, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Keiichi Kuroki in
Current site
Google Scholar
PubMed
Close
 DVM
, and
James L. Tomlinson Comparative Orthopaedic Laboratory, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by James L. Tomlinson in
Current site
Google Scholar
PubMed
Close
 DVM, MVSc

Abstract

Objective—To determine effects of carprofen and dexamethasone on chondrocytes in a culture model of osteoarthritis (OA).

Sample Population—Chondrocytes isolated from articular cartilage of the humeral head of 5 adult dogs.

Procedure—Chondrocytes were harvested, cultured and subcultured in monolayer, and then cultured in a 3-dimensional (3-D) medium. Cells from each dog were distributed into 6 groups with differing content of liquid medium for each 3-D construct (agarose [AG], AG plus interleukin [IL]-1β, AG plus carprofen [4 μg/mL], AG plus dexamethasone [1 mg/mL], AG plus IL-1β [20 ng/mL] plus carprofen [4 μg/mL], and AG plus IL-1β (20 ng/mL) plus dexamethasone (1 mg/mL). On days 3, 6, 12, and 20 of culture, samples from all groups were collected. Liquid media were assayed for glycosaminoglycan, prostaglandin (PG)E2, matrix metalloprotease (MMP)-3, and MMP- 13 concentrations. All 3-D constructs were evaluated for viability, cell morphology, proteoglycan staining, and collagen type-II concentration. Total glycosaminoglycan content in each 3-D construct was quantitated by spectrophotometric assay.

Results—Addition of IL-1β caused a significant loss of cell viability and matrix production. Addition of carprofen or dexamethasone caused significant decreases in PGE2 in the liquid media, and each was minimally effective in protecting chondrocytes against negative effects of IL-1β.

Conclusions and Clinical Relevance—Human recombinant IL-1β resulted in loss of cell viability, alterations in extracellular matrix components, and production of PG and MMP. Carprofen and dexamethasone had little effect on cell and matrix variables but did decrease PGE2 concentrations and primarily affected the inflammatory pathway of osteoarthritis. (Am J Vet Res 2002;63:1363–1369)

Abstract

Objective—To determine effects of carprofen and dexamethasone on chondrocytes in a culture model of osteoarthritis (OA).

Sample Population—Chondrocytes isolated from articular cartilage of the humeral head of 5 adult dogs.

Procedure—Chondrocytes were harvested, cultured and subcultured in monolayer, and then cultured in a 3-dimensional (3-D) medium. Cells from each dog were distributed into 6 groups with differing content of liquid medium for each 3-D construct (agarose [AG], AG plus interleukin [IL]-1β, AG plus carprofen [4 μg/mL], AG plus dexamethasone [1 mg/mL], AG plus IL-1β [20 ng/mL] plus carprofen [4 μg/mL], and AG plus IL-1β (20 ng/mL) plus dexamethasone (1 mg/mL). On days 3, 6, 12, and 20 of culture, samples from all groups were collected. Liquid media were assayed for glycosaminoglycan, prostaglandin (PG)E2, matrix metalloprotease (MMP)-3, and MMP- 13 concentrations. All 3-D constructs were evaluated for viability, cell morphology, proteoglycan staining, and collagen type-II concentration. Total glycosaminoglycan content in each 3-D construct was quantitated by spectrophotometric assay.

Results—Addition of IL-1β caused a significant loss of cell viability and matrix production. Addition of carprofen or dexamethasone caused significant decreases in PGE2 in the liquid media, and each was minimally effective in protecting chondrocytes against negative effects of IL-1β.

Conclusions and Clinical Relevance—Human recombinant IL-1β resulted in loss of cell viability, alterations in extracellular matrix components, and production of PG and MMP. Carprofen and dexamethasone had little effect on cell and matrix variables but did decrease PGE2 concentrations and primarily affected the inflammatory pathway of osteoarthritis. (Am J Vet Res 2002;63:1363–1369)

Advertisement