Calcium regulation by skeletal muscle membranes of horses with recurrent exertional rhabdomyolysis

Tara L. Ward Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108.

Search for other papers by Tara L. Ward in
Current site
Google Scholar
PubMed
Close
 BA
,
Stephanie J. Valberg Departments of Clinical and Population Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108.

Search for other papers by Stephanie J. Valberg in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Esther M. Gallant Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108.

Search for other papers by Esther M. Gallant in
Current site
Google Scholar
PubMed
Close
 PhD
, and
James R. Mickelson Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108.

Search for other papers by James R. Mickelson in
Current site
Google Scholar
PubMed
Close
 PhD

Click on author name to view affiliation information

Abstract

Objective—To determine whether an alteration in calcium regulation by skeletal muscle sarcoplasmic reticulum, similar to known defects that cause malignant hyperthermia (MH), could be identified in membrane vesicles isolated from the muscles of Thoroughbreds with recurrent exertional rhabdomyolysis (RER).

Sample Population—Muscle biopsy specimens from 6 Thoroughbreds with RER and 6 healthy (control) horses.

Procedures—RER was diagnosed on the basis of a history of > 3 episodes of exertional rhabdomyolysis confirmed by increases in serum creatine kinase (CK) activity. Skeletal muscle membrane vesicles, prepared by differential centrifugation of muscle tissue homogenates obtained from the horses, were characterized for sarcoplasmic reticulum (SR) activities, including the Ca2+ release rate for the ryanodine receptor-Ca2+ release channel, [3H]ryanodine binding activities, and rate of SR Ca2+-ATPase activity and its activation by Ca2+.

Results—Time course of SR Ca2+-induced Ca2+ release and [3H]ryanodine binding to the ryanodine receptor after incubation with varying concentrations of ryanodine, caffeine, and ionized calcium did not differ between muscle membranes obtained from control and RER horses. Furthermore, the maximal rate of SR Ca2+-ATPase activity and its affinity for Ca2+ did not differ between muscle membranes from control horses and horses with RER.

Conclusions and Clinical Relevance—Despite clinical and physiologic similarities between RER and MH, we concluded that RER in Thoroughbreds does not resemble the SR ryanodine receptor defect responsible for MH and may represent a novel defect in muscle excitation-contraction coupling, calcium regulation, or contractility. (Am J Vet Res 2000;61:242–247)

Abstract

Objective—To determine whether an alteration in calcium regulation by skeletal muscle sarcoplasmic reticulum, similar to known defects that cause malignant hyperthermia (MH), could be identified in membrane vesicles isolated from the muscles of Thoroughbreds with recurrent exertional rhabdomyolysis (RER).

Sample Population—Muscle biopsy specimens from 6 Thoroughbreds with RER and 6 healthy (control) horses.

Procedures—RER was diagnosed on the basis of a history of > 3 episodes of exertional rhabdomyolysis confirmed by increases in serum creatine kinase (CK) activity. Skeletal muscle membrane vesicles, prepared by differential centrifugation of muscle tissue homogenates obtained from the horses, were characterized for sarcoplasmic reticulum (SR) activities, including the Ca2+ release rate for the ryanodine receptor-Ca2+ release channel, [3H]ryanodine binding activities, and rate of SR Ca2+-ATPase activity and its activation by Ca2+.

Results—Time course of SR Ca2+-induced Ca2+ release and [3H]ryanodine binding to the ryanodine receptor after incubation with varying concentrations of ryanodine, caffeine, and ionized calcium did not differ between muscle membranes obtained from control and RER horses. Furthermore, the maximal rate of SR Ca2+-ATPase activity and its affinity for Ca2+ did not differ between muscle membranes from control horses and horses with RER.

Conclusions and Clinical Relevance—Despite clinical and physiologic similarities between RER and MH, we concluded that RER in Thoroughbreds does not resemble the SR ryanodine receptor defect responsible for MH and may represent a novel defect in muscle excitation-contraction coupling, calcium regulation, or contractility. (Am J Vet Res 2000;61:242–247)

All Time Past Year Past 30 Days
Abstract Views 57 0 0
Full Text Views 351 153 17
PDF Downloads 181 95 2
Advertisement