In vitro determination of contact areas in the normal elbow joint of dogs

Chris A. Preston J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Chris A. Preston in
Current site
Google Scholar
PubMed
Close
 BVSc
,
Kurt S. Schulz J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Kurt S. Schulz in
Current site
Google Scholar
PubMed
Close
 DVM, MS
, and
Philip H. Kass J.D. Wheat Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Philip H. Kass in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To evaluate areas of articular contact of the proximal portions of the radius and ulna in normal elbow joints of dogs and the effects of axial load on size and location of these areas.

Sample Population—Forelimbs obtained from cadavers of 5 adult mixed-breed dogs.

Procedure—After forelimbs were removed, liquidphase polymethyl methacrylate was applied to articular surfaces of the elbow joint, and limbs were axially loaded. Articular regions void of casting material were stained with water-soluble paint. Relative articular contact areas were determined by computer-assisted image analyses of stained specimens. Repeatability of the technique was evaluated by analyses of casts from bilateral forelimbs of 1 cadaver. Incremental axial loads were applied to left forelimbs from 4 cadavers to determine effects of load on articular contact.

Results—Specific areas of articular contact were identified on the radius, the craniolateral aspect of the anconeus, and the medial coronoid process. The medial coronoid and radial contact areas were continuous across the radioulnar articulation. There was no articular contact of the medial aspect of the anconeus with the central trochlear notch. Coefficients of variation of contact areas between repeated tests and between contralateral limbs was < 20%. Significant overall effects of axial load on contact area or location were not identified.

Conclusions—Three distinct contact areas were evident in the elbow joint of dogs. Two ulnar contact areas were detected, suggesting there may be physiologic incongruity of the humeroulnar joint. There was no evidence of surface incongruity between the medial edge of the radial head and the lateral edge of the medial coronoid process. (Am J Vet Res 2000;61: 1315–1321)

Abstract

Objective—To evaluate areas of articular contact of the proximal portions of the radius and ulna in normal elbow joints of dogs and the effects of axial load on size and location of these areas.

Sample Population—Forelimbs obtained from cadavers of 5 adult mixed-breed dogs.

Procedure—After forelimbs were removed, liquidphase polymethyl methacrylate was applied to articular surfaces of the elbow joint, and limbs were axially loaded. Articular regions void of casting material were stained with water-soluble paint. Relative articular contact areas were determined by computer-assisted image analyses of stained specimens. Repeatability of the technique was evaluated by analyses of casts from bilateral forelimbs of 1 cadaver. Incremental axial loads were applied to left forelimbs from 4 cadavers to determine effects of load on articular contact.

Results—Specific areas of articular contact were identified on the radius, the craniolateral aspect of the anconeus, and the medial coronoid process. The medial coronoid and radial contact areas were continuous across the radioulnar articulation. There was no articular contact of the medial aspect of the anconeus with the central trochlear notch. Coefficients of variation of contact areas between repeated tests and between contralateral limbs was < 20%. Significant overall effects of axial load on contact area or location were not identified.

Conclusions—Three distinct contact areas were evident in the elbow joint of dogs. Two ulnar contact areas were detected, suggesting there may be physiologic incongruity of the humeroulnar joint. There was no evidence of surface incongruity between the medial edge of the radial head and the lateral edge of the medial coronoid process. (Am J Vet Res 2000;61: 1315–1321)

All Time Past Year Past 30 Days
Abstract Views 83 0 0
Full Text Views 2598 2291 325
PDF Downloads 216 114 20
Advertisement