Cardiorespiratory and metabolic effects of xylazine, detomidine, and a combination of xylazine and acepromazine administered after exercise in horses

John A. E. Hubbell From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by John A. E. Hubbell in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Kenneth W. Hinchcliff From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Kenneth W. Hinchcliff in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD
,
L. Michael Schmall From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by L. Michael Schmall in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
William W. Muir III From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by William W. Muir III in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
James T. Robertson From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by James T. Robertson in
Current site
Google Scholar
PubMed
Close
 DVM
, and
Richard A. Sams From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Richard A. Sams in
Current site
Google Scholar
PubMed
Close
 PhD
Free access

Abstract

Objective

To determine sedative, cardiorespiratory and metabolic effects of xylazine hydrochloride, detomidine hydrochloride, and a combination of xylazine and acepromazine administered IV at twice the standard doses in Thoroughbred horses recuperating from a brief period of maximal exercise.

Animals

6 adult Thoroughbreds,

Procedure

Horses were preconditioned by exercising them on a treadmill to establish a uniform level of fitness. Each horse ran 4 simulated races, with a minimum of 14 days between races. Simulated races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until they were fatigued or for a maximum of 2 minutes. One minute after the end of exercise, horses were treated IV with xylazine (2.2 mg/kg of body weight), detomidine (0.04 mg/kg), a combination of xylazine (2.2 mg/kg) and acepromazine (0.04 mg/kg), or saline (0.9% NaCl) solution. Treatments were randomized so that each horse received each treatment once, in random order. Cardiopulmonary indices were measured, and samples of arterial and venous blood were collected immediately before and at specific times for 90 minutes after the end of each race.

Results

All sedatives produced effective sedation. The cardiopulmonary depression that was induced was qualitatively similar to that induced by administration of these sedatives to resting horses and was not severe. Sedative administration after exercise prolonged the exercise-induced increase in body temperature.

Conclusions and Clinical Relevance

Administration of xylazine, detomidine, or a combination of xylazine-acepromazine at twice the standard doses produced safe and effective sedation in horses that had just undergone a brief, intense bout of exercise. (Am J Vet Res 1999;60:1271–1279)

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1051 979 44
PDF Downloads 105 67 2
Advertisement