Cardiorespiratory effects of low-flow and closed circuit inhalation anesthesia, using sevoflurane delivered with an in-circuit vaporizer and concentrations of compound A

William W. Muir III From the Department of Veterinary Clinical Sciences, The Ohio State University, 601 Tharp St, Columbus, OH 43210.

Search for other papers by William W. Muir III in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
and
Jennifer Gadawski From the Department of Veterinary Clinical Sciences, The Ohio State University, 601 Tharp St, Columbus, OH 43210.

Search for other papers by Jennifer Gadawski in
Current site
Google Scholar
PubMed
Close

Abstract

Objectives

To determine the concentrations of sevoflurane and compound A (a degradation product of sevoflurane) in the anesthetic circuit when sevoflurane was delivered with an in-circuit vaporizer, and to determine the cardiorespiratory effects of sevoflurane in dogs.

Animals

6 mixed-breed dogs.

Procedure

In-circuit vaporizers were connected to the inspiratory limb of a circle rebreathing system connected to a ventilator. A reservoir bag was attached to the Y-piece connector to act as an artificial lung, and sevoflurane concentrations in the anesthetic circuit were measured at vaporizer settings of 1, 3, 5, 7, and 10 and oxygen flow rates of 250 and 500 ml/min. Cardiorespiratory effects of sevoflurane were determined in dogs while they were breathing spontaneously, during controlled ventilation, and during closed circuit anesthesia. Concentrations of compound A were determined by means of gas chromatography with flame ionization.

Results

The concentration of sevoflurane in the anesthetic circuit increased with vaporizer setting and time. For oxygen flow rates of 250 and 500 ml/min, vaporizer settings between 5 and 7 and between 7 and 10, respectively, produced sevoflurane concentrations closest to values reported to produce surgical anesthesia in dogs. Significant differences were not observed in cardiorespiratory variables with time or among anesthetic conditions. Concentrations of compound A in the anesthetic circuit were less than values reported to produce renal toxicoses and death in rats.

Conclusion

Results suggested that sevoflurane can be administered to nonsurgically stimulated dogs, using an in-circuit vaporizer and low (< 15 ml/kg/min) oxygen flow rates, without causing significant cardiorespiratory depression or clinically important concentrations of compound A. (Am J Vet Res 1998;59:603–608)

Abstract

Objectives

To determine the concentrations of sevoflurane and compound A (a degradation product of sevoflurane) in the anesthetic circuit when sevoflurane was delivered with an in-circuit vaporizer, and to determine the cardiorespiratory effects of sevoflurane in dogs.

Animals

6 mixed-breed dogs.

Procedure

In-circuit vaporizers were connected to the inspiratory limb of a circle rebreathing system connected to a ventilator. A reservoir bag was attached to the Y-piece connector to act as an artificial lung, and sevoflurane concentrations in the anesthetic circuit were measured at vaporizer settings of 1, 3, 5, 7, and 10 and oxygen flow rates of 250 and 500 ml/min. Cardiorespiratory effects of sevoflurane were determined in dogs while they were breathing spontaneously, during controlled ventilation, and during closed circuit anesthesia. Concentrations of compound A were determined by means of gas chromatography with flame ionization.

Results

The concentration of sevoflurane in the anesthetic circuit increased with vaporizer setting and time. For oxygen flow rates of 250 and 500 ml/min, vaporizer settings between 5 and 7 and between 7 and 10, respectively, produced sevoflurane concentrations closest to values reported to produce surgical anesthesia in dogs. Significant differences were not observed in cardiorespiratory variables with time or among anesthetic conditions. Concentrations of compound A in the anesthetic circuit were less than values reported to produce renal toxicoses and death in rats.

Conclusion

Results suggested that sevoflurane can be administered to nonsurgically stimulated dogs, using an in-circuit vaporizer and low (< 15 ml/kg/min) oxygen flow rates, without causing significant cardiorespiratory depression or clinically important concentrations of compound A. (Am J Vet Res 1998;59:603–608)

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4026 4019 305
PDF Downloads 53 49 6
Advertisement