Effect of irradiation with a low-intensity diode laser on the metabolism of equine articular cartilage in vitro

Daniel W. Ebert From the Biomedical Engineering Center (Ebert, Roberts), College of Engineering and the Orthopedic Research Laboratory (Bertone), College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Daniel W. Ebert in
Current site
Google Scholar
PubMed
Close
 PhD
,
Alicia L. Bertone From the Biomedical Engineering Center (Ebert, Roberts), College of Engineering and the Orthopedic Research Laboratory (Bertone), College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Alicia L. Bertone in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Cynthia Roberts From the Biomedical Engineering Center (Ebert, Roberts), College of Engineering and the Orthopedic Research Laboratory (Bertone), College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Cynthia Roberts in
Current site
Google Scholar
PubMed
Close
 PhD

Click on author name to view affiliation information

Abstract

Objective

To determine whether irradiation with a low-intensity diode laser, which produces radiation at a wavelength of 810 nm, will induce nonthermal enhancement of chondrocyte metabolism.

Sample Population

144 grossly normal articular cartilage expiants aseptically harvested from the femoral condyles of 6 adult horses.

Procedure

Treated cartilage expiants were irradiated with a diode laser at 1 of 7 fluence levels that ranged from 8 to 1,600 J/cm2. Expiants were incubated for 24 or 72 hours, labeled for 24 hours with [35S]Na2SO4, and assayed for newly synthesized sulfated glycosaminoglycan (GAG; measured incorporation of 35SO4) and endogenous GAG, chondroitin 6-sulfate (CS), and keratan sulfate (KS) content, using a dimethylmethylene blue assay. Laser-induced temperature changes were measured during irradiation with a diode laser and a neodymiumyttrium aluminum garnet (Nd:YAG) laser, which produces radiation at a wavelength of 1,064 nm, using conditions that were reported in previous studies to increase explant metabolism.

Results

After incubation for 24 or 72 hours, rate of 35SO4 uptake or endogenous GAG, CS, or KS content in irradiated expiants was not significantly different than in nonirradiated expiants. Cartilage temperature increased < 4.75 C during diode laser application. Cartilage temperature increased 5 to 12 C during Nd:YAG laser application.

Conclusions

Minimal thermal increases in cartilage expiants with use of a low-intensity diode laser resulted in no change in proteoglycan metabolism of chondrocytes. An increase in tissue temperature over a narrow range with use of a Nd:YAG laser may have contributed to the metabolic alteration of chondrocytes reported in previous studies. (Am J Vet Res 1998;59:1613-1618)

Abstract

Objective

To determine whether irradiation with a low-intensity diode laser, which produces radiation at a wavelength of 810 nm, will induce nonthermal enhancement of chondrocyte metabolism.

Sample Population

144 grossly normal articular cartilage expiants aseptically harvested from the femoral condyles of 6 adult horses.

Procedure

Treated cartilage expiants were irradiated with a diode laser at 1 of 7 fluence levels that ranged from 8 to 1,600 J/cm2. Expiants were incubated for 24 or 72 hours, labeled for 24 hours with [35S]Na2SO4, and assayed for newly synthesized sulfated glycosaminoglycan (GAG; measured incorporation of 35SO4) and endogenous GAG, chondroitin 6-sulfate (CS), and keratan sulfate (KS) content, using a dimethylmethylene blue assay. Laser-induced temperature changes were measured during irradiation with a diode laser and a neodymiumyttrium aluminum garnet (Nd:YAG) laser, which produces radiation at a wavelength of 1,064 nm, using conditions that were reported in previous studies to increase explant metabolism.

Results

After incubation for 24 or 72 hours, rate of 35SO4 uptake or endogenous GAG, CS, or KS content in irradiated expiants was not significantly different than in nonirradiated expiants. Cartilage temperature increased < 4.75 C during diode laser application. Cartilage temperature increased 5 to 12 C during Nd:YAG laser application.

Conclusions

Minimal thermal increases in cartilage expiants with use of a low-intensity diode laser resulted in no change in proteoglycan metabolism of chondrocytes. An increase in tissue temperature over a narrow range with use of a Nd:YAG laser may have contributed to the metabolic alteration of chondrocytes reported in previous studies. (Am J Vet Res 1998;59:1613-1618)

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 21
PDF Downloads 23 23 1
Advertisement