Local hemodynamics, permeability, and oxygen metabolism during acute inflammation of innervated or denervated isolated equine joints

Joanne Hardy From the Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210.

Search for other papers by Joanne Hardy in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Alicia L. Bertone From the Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210.

Search for other papers by Alicia L. Bertone in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
William W. Muir III From the Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210.

Search for other papers by William W. Muir III in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objectives

To determine oxygen metabolism, permeability, and blood flow in isolated joints in response to interleukin 1β (IL-1β) and contribution of innervation.

Sample Population

One metacarpophalangeal (MCP) joint of 24 adult horses.

Procedure

The MCP joint was isolated for 6 hours in a pump-perfused, auto-oxygenated, innervated or denervated preparation. Isolated joints were assigned to the following 4 groups: control, control-denervated, inflamed, and inflamed-denervated, and inflammation was induced by intra-articular injection of IL-1β. Circuit arterial and venous pressures, flows, and blood gas tensions, synovial fluid production, and intra-articular pressure were measured. Total vascular resistance; oxygen delivery, consumption, and extraction ratio (ER); and permeability surface area product were calculated. Synovial membrane blood flow was determined at 0, 60, and 330 minutes. Synovial membrane wet-to-dry ratio was obtained, and permeability to macromolecules was determined by intra-articular injection of Evans blue albumin and fluorescein isothiocyanate-conjugated dextran.

Results

Oxygen delivery and synovial membrane blood flow progressively increased but were not different among groups. Oxygen consumption and ER significantly increased in inflamed joints, as did intraarticular pressure and synovial fluid production. Inflamed joints had greater wet-to-dry ratio. Albumin permeability significantly increased in the villous synovial membrane of the inflamed groups, and dextran permeability was increased in the innervated groups, with a trend toward increased permeability in inflamed groups.

Conclusion

Inflammation significantly increased oxygen demand, which was initially met by increased ER. Permeability to small molecules was increased with inflammation; innervation increased permeability to large molecules. Use of an isolated joint model enabled documentation of the physiologic responses of the joint to acute inflammation. (Am J Vet Res 1998;59:1307–1316)

Abstract

Objectives

To determine oxygen metabolism, permeability, and blood flow in isolated joints in response to interleukin 1β (IL-1β) and contribution of innervation.

Sample Population

One metacarpophalangeal (MCP) joint of 24 adult horses.

Procedure

The MCP joint was isolated for 6 hours in a pump-perfused, auto-oxygenated, innervated or denervated preparation. Isolated joints were assigned to the following 4 groups: control, control-denervated, inflamed, and inflamed-denervated, and inflammation was induced by intra-articular injection of IL-1β. Circuit arterial and venous pressures, flows, and blood gas tensions, synovial fluid production, and intra-articular pressure were measured. Total vascular resistance; oxygen delivery, consumption, and extraction ratio (ER); and permeability surface area product were calculated. Synovial membrane blood flow was determined at 0, 60, and 330 minutes. Synovial membrane wet-to-dry ratio was obtained, and permeability to macromolecules was determined by intra-articular injection of Evans blue albumin and fluorescein isothiocyanate-conjugated dextran.

Results

Oxygen delivery and synovial membrane blood flow progressively increased but were not different among groups. Oxygen consumption and ER significantly increased in inflamed joints, as did intraarticular pressure and synovial fluid production. Inflamed joints had greater wet-to-dry ratio. Albumin permeability significantly increased in the villous synovial membrane of the inflamed groups, and dextran permeability was increased in the innervated groups, with a trend toward increased permeability in inflamed groups.

Conclusion

Inflammation significantly increased oxygen demand, which was initially met by increased ER. Permeability to small molecules was increased with inflammation; innervation increased permeability to large molecules. Use of an isolated joint model enabled documentation of the physiologic responses of the joint to acute inflammation. (Am J Vet Res 1998;59:1307–1316)

Advertisement