Characterization of the hemodynamic and metabolic alterations in the large colon of horses during low-flow ischemia and reperfusion

Rustin M. Moore From the Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210-1089.

Search for other papers by Rustin M. Moore in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
William W. Muir From the Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210-1089.

Search for other papers by William W. Muir in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Alicia L Bertone From the Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210-1089.

Search for other papers by Alicia L Bertone in
Current site
Google Scholar
PubMed
Close
 DVM PhD
, and
Warren L. Beard From the Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210-1089.

Search for other papers by Warren L. Beard in
Current site
Google Scholar
PubMed
Close
 DVM, MS

Click on author name to view affiliation information

Summary

Effects of low-flow ischemia and reperfusion of the large colon on systemic and colonic hemodynamic and metabolic variables were determined in horses. Twenty-four adult horses were randomly allocated to 3 groups: sham-operated (n = 6), 6 hours of ischemia (n = 9), and 3 hours of ischemia and 3 hours of reperfusion (n = 9). Low-flow ischemia was induced in groups 2 and 3 by reducing colonic arterial blood flow to 20% of baseline. Heart rate, arterial blood pressures, cardiac index, pulmonary artery pressure, right atrial pressure, and colonic blood flow were monitored. Arterial, mixed-venous, and colonic venous blood gas and oximetry analyses; PCV; and blood lactate and pyruvate and plasma total protein concentrations were measured. Data were recorded, and blood samples were collected at baseline and at 30-minute intervals for 6 hours; additionally, data were collected at 185, 190, and 195 minutes (corresponding to 5, 10, and 15 minutes of reperfusion in group-3 horses). There were no differences among groups at baseline or across time for any systemic hemodynamic or metabolic variable. Colonic blood flow did not change across time in group-1 horses. Colonic blood flow significantly (P < 0.05) decreased to 20% of baseline at induction of ischemia in horses of groups 2 and 3 and remained significantly decreased throughout the ischemic period in horses of groups 2 (6 hours) and 3 (3 hours). Colonic blood flow significantly (P < 0.05) increased above baseline by 5 minutes of reperfusion in group-3 horses. Colonic oxygen delivery and oxygen consumption, and colonic venous pH, Po2 percentage saturation of hemoglobin, and oxygen content were significantly (P < 0.05) decreased within 30 minutes after induction of ischemia in horses of groups 2 and 3; colonic venous Po2 colonic oxygen extraction ratio, and lactate and pyruvate concentrations were significantiy (P < 0.05) increased by 30 minutes of ischemia. These alterations continued throughout ischemia, but within 5 minutes of reperfusion in group-3 horses, these variables either returned to baseline (pH, Pco2 lactate, pyruvate), significantly (P < 0.05) increased above baseline (Po2 oxygen content, % saturation of hemoglobin), or significantly (P < 0.05) decreased below baseline (colonic oxygen extraction ratio). Colonic oxygen consumption remained decreased during reperfusion in group-3 horses. Colonic mucosal ischemia-reperfusion injury observed in this model of ischemia was associated with local colonic hemodynamic and metabolic alterations in the presence of systemic hemodynamic and metabolic stability. Reactive hyperemia was observed at restoration of colonic blood flow in group-3 horses and persisted during reperfusion. Colonic venous metabolic alterations were corrected at reperfusion, indicating adaptation of the colon to the return of blood flow and oxygen delivery with resultant decrease in anaerobic metabolism. The early alterations in these variables may simply represent a washout of metabolic by-products.

Summary

Effects of low-flow ischemia and reperfusion of the large colon on systemic and colonic hemodynamic and metabolic variables were determined in horses. Twenty-four adult horses were randomly allocated to 3 groups: sham-operated (n = 6), 6 hours of ischemia (n = 9), and 3 hours of ischemia and 3 hours of reperfusion (n = 9). Low-flow ischemia was induced in groups 2 and 3 by reducing colonic arterial blood flow to 20% of baseline. Heart rate, arterial blood pressures, cardiac index, pulmonary artery pressure, right atrial pressure, and colonic blood flow were monitored. Arterial, mixed-venous, and colonic venous blood gas and oximetry analyses; PCV; and blood lactate and pyruvate and plasma total protein concentrations were measured. Data were recorded, and blood samples were collected at baseline and at 30-minute intervals for 6 hours; additionally, data were collected at 185, 190, and 195 minutes (corresponding to 5, 10, and 15 minutes of reperfusion in group-3 horses). There were no differences among groups at baseline or across time for any systemic hemodynamic or metabolic variable. Colonic blood flow did not change across time in group-1 horses. Colonic blood flow significantly (P < 0.05) decreased to 20% of baseline at induction of ischemia in horses of groups 2 and 3 and remained significantly decreased throughout the ischemic period in horses of groups 2 (6 hours) and 3 (3 hours). Colonic blood flow significantly (P < 0.05) increased above baseline by 5 minutes of reperfusion in group-3 horses. Colonic oxygen delivery and oxygen consumption, and colonic venous pH, Po2 percentage saturation of hemoglobin, and oxygen content were significantly (P < 0.05) decreased within 30 minutes after induction of ischemia in horses of groups 2 and 3; colonic venous Po2 colonic oxygen extraction ratio, and lactate and pyruvate concentrations were significantiy (P < 0.05) increased by 30 minutes of ischemia. These alterations continued throughout ischemia, but within 5 minutes of reperfusion in group-3 horses, these variables either returned to baseline (pH, Pco2 lactate, pyruvate), significantly (P < 0.05) increased above baseline (Po2 oxygen content, % saturation of hemoglobin), or significantly (P < 0.05) decreased below baseline (colonic oxygen extraction ratio). Colonic oxygen consumption remained decreased during reperfusion in group-3 horses. Colonic mucosal ischemia-reperfusion injury observed in this model of ischemia was associated with local colonic hemodynamic and metabolic alterations in the presence of systemic hemodynamic and metabolic stability. Reactive hyperemia was observed at restoration of colonic blood flow in group-3 horses and persisted during reperfusion. Colonic venous metabolic alterations were corrected at reperfusion, indicating adaptation of the colon to the return of blood flow and oxygen delivery with resultant decrease in anaerobic metabolism. The early alterations in these variables may simply represent a washout of metabolic by-products.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 29
PDF Downloads 7 7 3
Advertisement