Use of flow-volume loops to evaluate upper airway obstruction in exercising Standardbreds

Jonathan M. Lumsden From the Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824-1314.

Search for other papers by Jonathan M. Lumsden in
Current site
Google Scholar
PubMed
Close
 BVSc
,
Frederik J. Derksen From the Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824-1314.

Search for other papers by Frederik J. Derksen in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
John A. Stick From the Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824-1314.

Search for other papers by John A. Stick in
Current site
Google Scholar
PubMed
Close
 DVM
, and
N. Edward Robinson From the Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824-1314.

Search for other papers by N. Edward Robinson in
Current site
Google Scholar
PubMed
Close
 BVetMed, PhD

Summary

Flow-volume loops generated from 6 Standardbreds at rest and during treadmill exercise were evaluated for their use in detecting upper airway obstruction. Tidal breathing flow-volume loops (tbfvl) were obtained from horses at rest and exercising at speeds corresponding to 75% of maximal heart rate and at maximal heart rate. The tbfvl were evaluated, using a pulmonary function computer; calculated indices describing airflow rate and expiratory-to-inspiratory airflow ratio for individual loops were determined. In addition to tbfvl indices, standard variables of upper airway function also were measured: peak airflow, peak pressure, and calculated inspiratory and expiratory impedances. Measurements were recorded before left recurrent laryngeal neurectomy (lrln; baseline) and 14 days after surgically induced left laryngeal hemiplegia.

When horses were at rest, tbfvl shape and indices describing the loop were highly variable. In contrast, in exercising horses, tbfvl shape was consistent and coefficients of variation of loop indices were less during exercise than at rest. After lrln, tbfvl from exercising horses indicated marked inspiratory airflow limitation, while the expiratory airflow curve was preserved. Peak inspiratory flow rate and inspiratory flow at 50 and 25% of tidal volume decreased, and the ratio of peak expiratory to inspiratory airflow and that of midtidal volume expiratory and inspiratory airflow rates increased significantly (P < 0.05). Inspiratory impedance also increased after lrln.

Although in resting horses tbfvl were not a useful indicator of upper airway obstruction, examination of tbfvl from exercising horses allowed objective, specific, and repeatable detection of upper airway obstruction. The technique was noninvasive, rapid, and well tolerated by horses; thus, it is a potentially valuable clinical diagnostic test.

Summary

Flow-volume loops generated from 6 Standardbreds at rest and during treadmill exercise were evaluated for their use in detecting upper airway obstruction. Tidal breathing flow-volume loops (tbfvl) were obtained from horses at rest and exercising at speeds corresponding to 75% of maximal heart rate and at maximal heart rate. The tbfvl were evaluated, using a pulmonary function computer; calculated indices describing airflow rate and expiratory-to-inspiratory airflow ratio for individual loops were determined. In addition to tbfvl indices, standard variables of upper airway function also were measured: peak airflow, peak pressure, and calculated inspiratory and expiratory impedances. Measurements were recorded before left recurrent laryngeal neurectomy (lrln; baseline) and 14 days after surgically induced left laryngeal hemiplegia.

When horses were at rest, tbfvl shape and indices describing the loop were highly variable. In contrast, in exercising horses, tbfvl shape was consistent and coefficients of variation of loop indices were less during exercise than at rest. After lrln, tbfvl from exercising horses indicated marked inspiratory airflow limitation, while the expiratory airflow curve was preserved. Peak inspiratory flow rate and inspiratory flow at 50 and 25% of tidal volume decreased, and the ratio of peak expiratory to inspiratory airflow and that of midtidal volume expiratory and inspiratory airflow rates increased significantly (P < 0.05). Inspiratory impedance also increased after lrln.

Although in resting horses tbfvl were not a useful indicator of upper airway obstruction, examination of tbfvl from exercising horses allowed objective, specific, and repeatable detection of upper airway obstruction. The technique was noninvasive, rapid, and well tolerated by horses; thus, it is a potentially valuable clinical diagnostic test.

Advertisement