Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Yu Hong x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the enzymatic and hormonal responses, heat shock protein 70 (Hsp70) production, and Hsp70 mRNA expression in heart and kidney tissues of transport-stressed pigs.

Animals—24 pigs (mean weight, 20 ± 1 kg).

Procedures—Pigs were randomly placed into groups of 12 each. One group was transported for 2 hours. The other group was kept under normal conditions and used as control pigs. Sera were used to detect triiodothyronine, thyroxine, and cortisol concentrations and alanine aminotransferase, aspartate aminotransferase, and creatine kinase activities. The heart and kidneys of anesthetized pigs were harvested and frozen in liquid nitrogen for quantification of Hsp70 and Hsp70 mRNA.

Results—No significant differences were detected in serum alanine aminotransferase activity and triiodothyronine and cortisol concentrations between groups; however, the serum creatine kinase and aspartate aminotransferase activities and thyroxine concentrations were higher in transported pigs. Densitometric readings of western blots revealed that the amount of Hsp70 in heart and kidney tissues was significantly higher in transported pigs, compared with control pigs. Results of fluorescence quantitative real-time PCR assay revealed that the Hsp70 mRNA transcription in heart tissue, but not kidney tissue, was significantly higher in transported pigs, compared with control pigs.

Conclusions and Clinical Relevance—Transportation imposed a severe stress on pigs that was manifested as increased serum activities of aspartate aminotransferase and creatine kinase and increased amounts of Hsp70 and Hsp70 mRNA expression in heart and kidney tissues. Changes in serum enzyme activities were related to the tissue damage of transport-stressed pigs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether rosiglitazone, an agonist of the peroxisome proliferator-activated receptor (PPAR) γ, could alleviate intestinal damage induced by Escherichia coli lipopolysaccharide (LPS) in weaned pigs.

Animals—18 weaned pigs (mean ± SD age, 28 ± 3 days).

Procedures—Pigs were allocated to 3 treatments (6 pigs/treatment). Control pigs were injected IP with dimethyl sulfoxide and then injected 30 minutes later with sterile saline (0.9% NaCl) solution, LPS-treated pigs were injected IP with dimethyl sulfoxide and then injected 30 minutes later with LPS (100 μg/kg, IP), and rosiglitazone plus LPS-treated pigs were injected with rosiglitazone (3 mg/kg, IP) and then injected 30 minutes later with LPS (100 μg/kg, IP). Pigs were euthanized 3 hours after challenge exposure, and samples of the small intestines were collected for histologic, biochemical, and immunohistochemical examination.

Results—Rosiglitazone alleviated LPS-induced intestinal damage, which was manifested as a lower crypt depth in the duodenum and a higher villus height-to-crypt depth ratio in the duodenum, jejunum, and ileum. Rosiglitazone also mitigated inhibition of crypt cell proliferation in the jejunum and ileum induced by LPS injection. Pretreatment with rosiglitazone significantly increased the number of cells that stained for PPARγ and significantly decreased the number of cells that stained for inducible nitric oxide synthase.

Conclusions and Clinical Relevance—Rosiglitazone alleviated intestinal damage induced by LPS injection in weaned pigs. The protective effects of rosiglitazone on the intestines may be associated with inhibition of intestinal proinflammatory mediators, such as inducible nitric oxide synthase. (Am J Vet Res 2010;71:1331–1338)

Full access
in American Journal of Veterinary Research