Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Yongling Zhou x
  • Refine by Access: All Content x
Clear All Modify Search



To examine the potential of galangin in a mouse model of ovalbumin (OVA)-induced allergic rhinitis (AR), as chronic AR, induced by immunoglobulin-E (IgE), leads to histamine release and nasal inflammation, and although galangin exhibits antiasthmatic and anti-inflammatory potential, its effect on AR is yet to be investigated.


126 BALB/c mice.


AR induction involved sensitizing female mice with OVA (5%, 500 µL, IP) for 14 days. Post OVA challenge, the mice were divided into 7 groups (n = 18/group), including normal, AR control, montelukast (10 mg/kg), galangin (5, 10, and 20 mg/kg), and per se (galangin [20 mg/kg] treatment. Various outcomes were evaluated, including nasal symptoms, histopathology, biochemistry, and nasal lavage fluid inflammatory cytokines and signaling pathways in nasal mucosal to assess galangin potential in AR.


In AR mice, galangin (10 and 20 mg/kg) significantly (P < .05) reduced sneezing, rubbing, and nasal discharge post-OVA challenge. Galangin treatment attenuated (P < .05) elevated serum histamine, β-hexosaminidase, IgE, and Immunoglobulin G1 levels in AR control mice. Additionally, galangin significantly (P < .05) decreased OVA-induced alterations in IL-4, IL-6, IL-13, and interferon-γ levels in nasal lavage fluid compared to AR control mice. Western blot analysis demonstrated that galangin lowered OVA-induced AR by significantly (P < .05) downregulating the phosphorylated protein kinase B and mammalian target of rapamycin-protein expressions while markedly (P < .05) upregulating the glycogen synthase kinase-3β protein expressions in nasal mucosal. Galangin also significantly ameliorated (P < .05) the OVA-induced histological aberrations in the nasal mucosa, reflected by reduced eosinophil infiltration, hyperplasia, and edema.


Galangin exhibits antihistaminic and anti-inflammatory effects in AR mice by regulating IgE-mediated histamine and inflammatory release and modulating the phosphatidylinositol 3-kinase/Ak strain transforming/mammalian target of rapamycin pathways.

Open access
in American Journal of Veterinary Research