Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Yi-Jen Chang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To evaluate effects of loop diameter of a modified Kessler locking-loop (LL) suture on in vitro tensile strength and gapping characteristics of canine flexor tendon repairs.

SAMPLE

48 cadaveric superficial digital flexor tendons from 24 adult medium- to large-breed dogs.

PROCEDURES

Flexor tendons were randomly assigned to 4 groups (n = 12/group) and repaired with 2-0 polypropylene in a LL pattern with loops measuring 1, 2, 3, or 4 mm in diameter. Biomechanical loads, gap formation between tendon ends, and failure modes were evaluated and compared between groups.

RESULTS

Increasing loop diameter from 1 to 4 mm significantly increased yield (P = .048), peak (P < .001), and failure (P < .001) loads. There were no significant differences in yield, peak, and failure loads between 1- and 2-mm loops. Load to 3-mm gap formation was significantly (P < .001) greater for 4-mm loops, compared with 1-, 2-, and 3-mm loops. Failure mode did not differ significantly among experimental groups, with 46 of 48 (96%) of constructs failing because of suture breakage.

CLINICAL RELEVANCE

Loop diameter of a LL suture pattern is an important biomechanical variable that influences construct biomechanics of canine tendon suture repairs. Loop diameters > 3 mm are recommended when the size of the tendon allows. Further studies are necessary to determine the in vivo effect of these findings, particularly the effects on tendon blood supply.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine the effects of 2-, 4-, 6- and 8-strand suture repairs on the biomechanical properties of canine gastrocnemius tenorrhaphy constructs in an ex vivo model.

SAMPLE

56 cadaveric gastrocnemius musculotendinous units from 28 adult large-breed dogs.

PROCEDURES

Tendons were randomly assigned to 4 repair groups (2-, 4-, 6- or 8-strand suture technique; n = 14/group). Following tenotomy, repairs were performed with the assigned number of strands of 2-0 polypropylene suture in a simple interrupted pattern. Biomechanical testing was performed. Yield, peak, and failure loads, the incidence of 1- and 3-mm gap formation, forces associated with gap formation, and failure modes were compared among groups.

RESULTS

Yield, peak, and failure forces differed significantly among groups, with significantly greater force required as the number of suture strands used for tendon repair increased. The force required to create a 1- or 3-mm gap between tendon ends also differed among groups and increased significantly with number of strands used. All constructs failed by mode of suture pull-through.

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated that increasing the number of suture strands crossing the repair site significantly increases the tensile strength of canine gastrocnemius tendon repair constructs and their resistance to gap formation. Future studies are needed to assess the effects of multistrand suture patterns on tendon glide function, blood supply, healing, and long-term clinical function in dogs to inform clinical decision-making.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate the effect of presurgical storage conditions on leakage pressures of enterotomy sites closed with unidirectional barbed suture material in fresh, chilled, and frozen-thawed cadaveric canine jejunal specimens.

SAMPLE

36 grossly normal jejunal segments obtained from 4 dog cadavers.

PROCEDURES

9 jejunal segments were harvested immediately from each euthanized dog and randomly assigned to be tested within 4 hours after collection (fresh segments), stored at 4°C for 24 hours before testing (chilled segments), or stored at −20°C for 7 days and thawed at 21°C for 6 hours before testing (frozen-thawed segments). For leakage pressure testing, a 3-cm-long antimesenteric enterotomy was performed and repaired with 3-0 unidirectional barbed suture material in a simple continuous pattern in each segment. Time to complete the enterotomy, initial leakage pressure, maximum intraluminal pressure, and leakage location were recorded for each segment.

RESULTS

Mean ± SD initial leakage pressure for fresh, chilled, and frozen-thawed segments was 52.8 ± 14.9 mm Hg, 51.8 ± 11.9 mm Hg, and 33.3 ± 7.7 mm Hg, respectively. Frozen-thawed segments had significantly lower mean initial leakage pressure, compared with findings for fresh or chilled segments. Time to complete the enterotomy, maximum intraluminal pressure, and leakage location did not differ among groups.

CONCLUSIONS AND CLINICAL RELEVANCE

Leak pressure testing of cadaveric jejunal segments that are fresh or chilled at 4°C for 24 hours is recommended for enterotomy studies involving barbed suture material in dogs. Freezing and thawing of cadaveric jejunal tissues prior to investigative use is not recommended because leak pressure data may be falsely low.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate and compare the anesthetic, analgesic, and cardiorespiratory effects of tiletamine-zolazepam-detomidine-butorphanol (TZDB), tiletamine-zolazepam-xylazine-butorphanol (TZXB), and ketamine-detomidine-butorphanol (KDB) in pigs and to assess anesthetic recovery duration and quality following administration of tolazoline as a reversal agent.

ANIMALS

11 healthy 2.5-month-old castrated male Landrace mixed-breed pigs.

PROCEDURES

In a randomized, blinded crossover study design, pigs received the following anesthetic combinations, IM: TZDB (tiletamine-zolazepam [3 mg/kg {1.36 mg/lb}], detomidine [0.18 mg/kg {0.08 mg/lb}], and butorphanol [0.12 mg/kg {0.05 mg/lb}]); TZXB (tiletamine-zolazepam [4 mg/kg {1.8 mg/lb}], xylazine [4 mg/kg], and butorphanol [0.2 mg/kg {0.09 mg/lb}]); and KDB (ketamine [8 mg/kg {3.63 mg/lb}], detomidine [0.18 mg/kg], and butorphanol [0.3 mg/kg {0.14 mg/lb}]). A 7-day washout period was provided between treatments. At 45 minutes of anesthesia, pigs received tolazoline (2 mg/kg [0.9 mg/lb], IM; n = 6) treatment or control (5) treatment with saline (0.9% NaCl) solution.

RESULTS

All anesthetic combinations induced anesthesia. Endotracheal intubation was completed within 5 minutes after anesthetic administration in all pigs, except in 2 pigs following administration of KDB. Durations (mean ± SD) of endotracheal intubation and lateral recumbency in pigs that did not receive tolazoline were 55.3 ± 4.8 minutes, 83.8 ± 15.8 minutes, and 28.2 ± 4.5 minutes and 112.4 ± 18.7 minutes, 117.2 ± 16.7 minutes, and 79.7 ± 6.0 minutes, respectively, for the TZDB, TZXB, and KDB anesthetic treatments. Tolazoline significantly shortened the duration of anesthetic recovery for all anesthetic treatments without affecting the recovery quality.

CONCLUSIONS AND CLINICAL RELEVANCE

All 3 anesthetic combinations were suitable for providing anesthesia in pigs. Tolazoline administration shortened the duration of anesthetic recovery without affecting the quality of recovery.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To evaluate the influence of superficial digital flexor tendon (SDFT) graft augmentation on the biomechanical properties and resistance to gap formation in a canine gastrocnemius tendon repair model.

SAMPLE POPULATION

28 canine cadaveric hind limbs.

PROCEDURES

Respective hindlimbs from each dog were randomized to one of two groups (n = 14/group) using a 3-loop–pulley (3LP) pattern alone or 3LP + SDFT graft augmentation. Biomechanical parameters evaluated included yield, peak, and failure loads; tensile loads required to create 1- and 3-mm gap formations; and mode of construct failure.

RESULTS

Mean yield and failure loads for the 3LP + SDFT graft group were 483.6 ± 148.0 N and 478.3 ± 147.9 N, respectively, and were greater compared to the 3LP group (34.2 ± 6.7 N and 34.0 ± 8.0 N, P < .0001). Loads to both 1- and 3-mm gap formations for the 3LP + SDFT graft group were greater compared to 3LP alone (P < .001). Failure modes did not differ between groups (P = .120), with constructs failing most commonly by suture pulling through opposed tendinous tissues whereas SDFT grafts remained intact.

CLINICAL RELEVANCE

SDFT graft augmentation increased yield, peak, and failure forces 14-fold across all examined biomechanical variables compared to the 3LP group. The 3LP + SDFT graft group required 3.6X and 6.5X greater loads to cause a 1- and 3-mm gap, respectively, between tendon ends. These data support the biomechanical advantages of SDFT graft augmentation to increase repair-site strength and to promote resistance to gap formation of the tenorrhaphy. Additional in vivo studies are required to determine the effect of SDFT augmentation on clinical function and active limb use after graft harvest in dogs.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate the effect of a double Krackow suture pattern (DK), with and without epitendinous suture augmentation (ES), in a canine gastrocnemius tendon (GT) model.

SAMPLE

Paired GTs from 12 adult dog cadavers and 4 control GT.

PROCEDURES

GTs were assigned to 2 groups (n = 12/group). Transverse tenotomy was performed and repaired with a DK or DK + ES. Yield, peak, and failure force, stiffness, occurrence of 1-and 3-mm gapping, and failure mode were examined.

RESULTS

Yield, peak, and failure loads were greater for DK + ES. Yield force was 48% greater for DK + ES (mean ± SD, 149.56 ± 53.26 N) versus DK (101.27 ± 37.17 N; P = 0.017). Peak force was 45% greater for DK + ES P < 0.001). Failure force was 47% greater for DK + ES (193.752 ± 31.43 N) versus DK (131.54 ± 22.28 N; P < 0.001). Construct stiffness was 36% greater for DK + ES (P = 0.04). All 12 DK and 10 of 12 DK + ES repairs produced a 1-mm gap, with all DK and 4 DK + ES repairs producing a 3-mm gap (P < 0.001). Loads required to create a 3-mm gap were significantly greater for DK + ES (P < 0.013). Suture breakage occurred in all DK repairs, which differed from DK + ES, where suture breakage (7/12) and tissue failure (5/12; P = 0.037) predominated.

CLINICAL RELEVANCE

Augmentation of a primary DK repair with an ES significantly improved construct strength in canine GT constructs while increasing loads required to cause 1- and 3-mm gap formation, respectively. ES augmentation is a simple technique modification that can be used to significantly increase construct strength, compared with DK alone.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To compare the biomechanical properties and gapping characteristics following loop modification of a 3-loop-pulley (3LP) pattern in an ex vivo canine common calcaneal tendon (CCT) avulsion repair model.

SAMPLE

56 skeletally mature hindlimbs from 28 canine cadavers.

PROCEDURES

The CCTs were randomized to 1 of 4 experimental groups (n = 14/group) then sharply transected at the teno-osseous junction. Groups consisted of a 3LP, 4-loop-pulley (4LP), 5-loop-pulley (5LP), or 6-loop-pulley (6LP) pattern with loops placed 60° apart using size-0 polypropylene. Yield, peak, and failure loads, construct stiffness, loads to produce a 3-mm teno-osseous gap, and failure mode were evaluated and compared between groups.

RESULTS

Yield (P = 0.001), peak (P < 0.001), and failure loads (P < 0.001), construct stiffness (P < 0.001), and loads to 3-mm gap formation (P = 0.005) were all significantly greater for 6LP compared to all other groups. Mode of failure did not differ among groups (P = 0.733) with 75% (42/56) of repairs failing by mechanism of core sutures pulling through the tendinous tissue. Pattern modification by increasing the number of loops increased the repair site strength by 1.4, 1.6, and 1.8 times for 4LP, 5LP, and 6LP compared to 3LP, respectively.

CLINICAL RELEVANCE

Increasing the number of suture loops compared to a traditional 3LP repair is a relatively simple technique modification that significantly increases teno-osseous repair site strength and loads required to cause 3-mm gap formation. The results of this study justify further focused investigation of increasing the number of suture loops in vivo for teno-osseous CCT repair in dogs.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine effects of bite depth for placement of an epitendinous suture on the biomechanical strength and gap formation of repaired canine tendons.

SAMPLE

48 superficial digital flexor tendons (SDFTs) obtained from 24 canine cadavers.

PROCEDURES

Tendons were assigned to 3 groups (16 tendons/group). Each SDFT was transected and then repaired with a continuous epitendinous suture placed with a bite depth of 1, 2, or 3 mm for groups 1, 2, and 3, respectively. Specimens were loaded to failure. Failure mode, gap formation, yield force, peak force, and failure force were analyzed.

RESULTS

Yield, peak, and failure forces differed significantly between groups 1 and 3 and groups 2 and 3 but not between groups 1 and 2. Comparison of the force resisted at 1 and 3 mm of gapping revealed a significant difference between groups 1 and 3 and groups 2 and 3 but not between groups 1 and 2. Failure mode did not differ among groups; suture pull-through occurred in 43 of 48 (89.6%) specimens.

CONCLUSIONS AND CLINICAL RELEVANCE

Increasing bite depth of an epitendinous suture toward the center of the tendon substance increased repair site strength and decreased the incidence of gap formation. Repair of tendon injuries in dogs by use of an epitendinous suture with bites made deep into the tendon should result in a stronger repair, which potentially would allow loading and rehabilitation to begin sooner after surgery. Suture techniques should be investigated in vivo to determine effects on tendinous healing and blood supply before clinical implementation.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate the effect of a continuous locking novel epitendinous suture (nES) pattern with and without a core locking-loop (LL) suture on the biomechanical properties of ex vivo canine superficial digital flexor tendon (SDFT) tenorrhaphy constructs.

SAMPLE

54 cadaveric forelimb SDFTs from 27 musculoskeletally normal adult dogs.

PROCEDURES

Tendons were assigned to 3 groups (18 SDFTs/group): sharply transected and repaired with a core LL suture alone (group 1), an nES pattern alone (group 2), or a combination of a core LL suture and nES pattern (group 3). All constructs underwent a single load-to-failure test. Yield, peak, and failure loads; gap formation incidence; and mode of failure were compared among the 3 groups.

RESULTS

Mean yield, peak, and failure loads differed significantly among the 3 groups and were greatest for group 3 and lowest for group 1. Mean yield, peak, and failure loads for group 3 constructs were greater than those for group 1 constructs by 50%, 47%, and 44%, respectively. None of the group 3 constructs developed 3-mm gaps. The most common mode of failure was suture pulling through the tendon for groups 1 (12/18) and 2 (12/18) and suture breakage for group 3 (13/18).

CONCLUSIONS AND CLINICAL RELEVANCE

Results suggested augmentation of a core LL suture with an nES pattern significantly increased the strength of and prevented 3-mm gap formation at the tenorrhaphy site in ex vivo canine SDFTs. In vivo studies are necessary to assess the effectiveness and practicality of the nES pattern for SDFT repair in dogs.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate the effect of knot location on the biomechanical strength and gapping characteristics of ex vivo canine gastrocnemius tenorrhaphy constructs.

SAMPLE

36 cadaveric gastrocnemius tendons from 18 adult dogs.

PROCEDURES

Tendons were randomly assigned to 3 groups (12 tendons/group) and sharply transected and repaired by means of a core locking-loop suture with the knot at 1 of 3 locations (exposed on the external surface of the tendon, buried just underneath the external surface of the tendon, or buried internally between the apposed tendon ends). All repairs were performed with size-0 polypropylene suture. All constructs underwent a single load-to-failure test. Yield, failure, and peak forces, mode of failure, and forces required for 1- and 3-mm gap formation were compared among the 3 knot-location groups.

RESULTS

Mean yield, failure, and peak forces and mean forces required for 1- and 3-mm gap formation did not differ significantly among the 3 groups. The mode of failure also did not differ significantly among the 3 groups, and the majority (33/36 [92%]) of constructs failed owing to the suture pulling through the tendinous substance.

CONCLUSIONS AND CLINICAL RELEVANCE

Final knot location did not significantly affect the biomechanical strength and gapping characteristics of canine gastrocnemius tenorrhaphy constructs. Therefore, all 3 evaluated knot locations may be acceptable for tendon repair in dogs. In vivo studies are necessary to further elucidate the effect of knot location in suture patterns commonly used for tenorrhaphy on tendinous healing and collagenous remodeling at the repair site.

Full access
in American Journal of Veterinary Research