Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: Wm Tod Drost x
- Refine by Access: All Content x
Abstract
Objective—To determine the dimensions and volume of thyroid tissue in clinically normal cats by use of computed tomography.
Animals—8 cats.
Procedure—Helical computed tomography images (2-mm collimation) were acquired from the cranial aspect of the second cervical vertebra through the caudal aspect of the fourth cervical vertebra. Data were acquired before contrast medium administration (n = 7 cats) and immediately after contrast medium enhancement (1 cat). Length, width, and height measurements of each thyroid lobe were made by use of transverse, dorsal, and sagittal plane images. Thyroid lobe volume was estimated by use of 3 methods.
Results—All thyroid lobes were histologically normal. Mean dimensions for a thyroid lobe were 16.5 × 2.00 × 4.31 mm (length × width × height) using only data from transverse images. Mean thyroid lobar volume was 113.75 mm3 using the sum of areas method. Mean total volume of thyroid tissue was 215.25 mm3 using the sum of areas method.
Conclusions and Clinical Relevance—Results may be useful for computed tomography evaluation of abnormal thyroid glands in cats, which warrants investigation.
Abstract
Objective—To determine the incidence of adverse events within 24 hours after contrast-enhanced ultrasonography (CEUS) in dogs and cats and compare the risk of death within 24 hours after imaging for animals that underwent ultrasonography with and without injection of a contrast agent.
Design—Retrospective case-control study.
Animals—750 animals (411 case dogs, 238 control dogs, 77 case cats, and 24 control cats).
Procedures—At 11 institutions, medical records were reviewed of dogs and cats that had CEUS performed (cases) as were medical records of dogs and cats with clinical signs similar to those of case animals that had ultrasonography performed without injection of a contrast agent (controls). Information regarding signalment; preexisting disease; type, dose, and administration route of contrast agent used; immediate (within 1 hour after CEUS) and delayed (> 1 and ≤ 24 hours after CEUS) adverse events; and occurrence and cause of death (when available) was extracted from each medical record. Risk of death within 24 hours after ultrasonography was compared between case and control animals.
Results—Of the 411 case dogs, 3 had immediate adverse events (vomiting or syncope) and 1 had a delayed adverse event (vomiting). No adverse events were recorded for case cats. Twenty-three of 357 (6.4%) clinically ill case animals and 14 of 262 (5.3%) clinically ill control animals died within 24 hours after ultrasonography; risk of death did not differ between cases and controls.
Conclusions and Clinical Relevance—Results indicated that CEUS was safe in dogs and cats.