Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: William G. Van Bonn x
  • Refine by Access: All Content x
Clear All Modify Search



To qualitatively review reports on lateral line depigmentation (LLD) in marine and freshwater fish.


English-language publications concerning LLD published before March 1, 2020.


Electronic searches of CAB abstracts, PubMed, and Web of Science databases and the proceedings of the International Association of Aquatic Animal Medicine were performed. Records were systematically screened and selected for inclusion in an integrative review. Bibliographies of records included in the review were examined to identify other records to be screened. Included records were qualitatively reviewed. Evidence level and quality were graded according to previously described criteria. Information pertinent to epidemiological factors, etiopathogenesis, clinical and histopathologic findings, treatment, and prevention of LLD was collected.


401 records were screened, and 24 unique publications (16 peer-reviewed articles, 1 textbook, and 7 abstracts) were included in the study; 12 (50%), 1 (4%), 6 (25%), and 5 (21%) were classified as evidence level I (experimental), II (quasi-experimental), III (nonexperimental), and V (clinical reports or clinician experience), respectively. Seventeen (71%) and 7 (29%) reports were classified as high quality and good quality, respectively.


LLD should be considered a clinical observation indicative of a dermato-logic response of fish to suboptimal conditions; LLD should continue to be adopted as the preferred term to describe the classic signs. Whereas gross findings are similar among species, histologic findings can vary. Evidence-based treatment of LLD for individual fish consists of source control (changing tanks or systems), topical treatment with 0.01% becaplermin gel, supportive care, and antimicrobial treatment when warranted. For schools of fish, treatment and prevention of LLD should be focused on improving suboptimal environmental and physiologic conditions. (J Am Vet Med Assoc 2021;259:617–625)

Full access
in Journal of the American Veterinary Medical Association


Case Description—An underweight, lethargic adult female California sea lion (Zalophus californianus) became stranded along the California shore and was captured and transported to a rehabilitation hospital for assessment and care.

Clinical Findings—Initial physical assessment revealed the sea lion was lethargic and in poor body condition. Active myositis was diagnosed on the basis of concurrent elevations in activities of alanine aminotransferase and creatine kinase detected during serum biochemical analysis. Infection with Sarcocystis neurona was diagnosed after serologic titers increased 4-fold over a 3-week period. Diagnosis was confirmed on the basis of histopathologic findings, positive results on immunohistochemical staining, and results of quantitative PCR assay on biopsy specimens obtained from the diaphragm and muscles of the dorsal cervical region.

Treatment and Outcome—Anticoccidial treatment was instituted with ponazuril (10 mg/kg [4.5 mg/lb], PO, q 24 h) and continued for 28 days. Prednisone (0.2 mg/kg [0.09 mg/lb], PO, q 12 h) was administered for 2 days and then every 24 hours for 5 days to treat associated inflammation. At the end of treatment, the sea lion was clinically normal, alanine aminotransferase and creatine kinase values were within reference limits, and antibody titers against S neurona had decreased 6-fold. The sea lion was released approximately 3 months after becoming stranded.

Clinical RelevanceS neurona–induced myositis was diagnosed in a free-ranging California sea lion. On the basis of the successful treatment and release of this sea lion, anticoccidial treatment should be considered for marine mammals in which protozoal disease is diagnosed.

Full access
in Journal of the American Veterinary Medical Association