Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Wanda Edwards x
  • Refine by Access: All Content x
Clear All Modify Search

Summary

The development and transmission of Anaplasma marginale was studied in Dermacentor andersoni males. Laboratory-reared male D andersoni were allowed to feed for 7 days on a calf with ascending A marginale parasitemia. The ticks were then held in a humidity chamber for 7 days before being placed on 2 susceptible calves. Anaplasmosis developed in the calves after incubation periods of 24 and 26 days. Gut and salivary glands were collected from ticks on each day of the 23-day experiment and examined with light and electron microscopy. Colonies of A marginale were first observed in midgut epithelial cells on the sixth day of feeding on infected calves, with the highest density of colonies found in gut cells while ticks were between feeding periods. The first colonies contained 1 large dense organism that subsequently gave rise to many reticulated organisms. Initially, these smaller organisms were electron-lucent and then became electron-dense. On the fifth day after ticks were transferred to susceptible calves for feeding, A marginale colonies were found in muscle cells on the hemocoel side of the gut basement membrane. A final site for development of A marginale was the salivary glands. Colonies were first seen in acinar cells on the first day that ticks fed on susceptible calves, with the highest percentage of infected host cells observed on days 7 to 9 of that feeding. Organisms within these colonies were initially electron-lucent, but became electron-dense.

Free access
in American Journal of Veterinary Research

SUMMARY

Development of the rickettsia, Anaplasmamarginale, in salivary glands of male Dermacentor andersoni exposed as nymphs or adult ticks, was studied indirectly by inoculation of susceptible calves with homogenates and directly by examination, using light microscopy and a DNA probe; some unfed ticks were incubated before tissues were collected. Salivary gland homogenates made from ticks in every treatment group caused anaplasmosis when injected into susceptible calves; prepatent periods decreased as the time that ticks had fed increased. Colonies of A marginale were seen only in salivary glands of ticks exposed as adults and not in those exposed as nymphs; the percentage of salivary gland acini infected in these ticks increased linearly with feeding time. However, the probe detected A marginale DNA in salivary glands of ticks from both groups; the amount of DNA detected increased as feeding time was extended. The amount of A marginaleDNA appeared to remain constant in gut tissues, but to increase in salivary glands. Salivary glands of adult-infected male ticks that were incubated, but did not feed a second time, became infected with A marginale, and the pattern of infection of acini varied with incubation temperature. Development of A marginale in salivary glands appears to be coordinated with the tick feeding cycle; highest infection rate was observed in ticks exposed as adults.

Free access
in American Journal of Veterinary Research