Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Vanessa L. Cook x
- Refine by Access: All Content x
Abstract
Objective—To determine whether treatment of horses with firocoxib affects recovery of ischemic-injured jejunum, while providing effective analgesia.
Animals—18 horses.
Procedures—Horses (n = 6 horses/group) received saline (0.9% NaCl) solution (1 mL/50 kg, IV), flunixin meglumine (1.1 mg/kg, IV, q 12 h), or firocoxib (0.09 mg/kg, IV, q 24 h) before 2 hours of jejunal ischemia. Horses were monitored via pain scores and received butorphanol for analgesia. After 18 hours, ischemic-injured and control mucosa were placed in Ussing chambers for measurement of transepithelial resistance and permeability to lipopolysaccharide. Histomorphometry was used to determine denuded villus surface area. Western blots for cyclooxygenase (COX)-1 and COX-2 were performed. Plasma thromboxane B2 and prostaglandin E2 metabolite (PGEM) concentrations were determined.
Results—Pain scores did not significantly increase after surgery in horses receiving flunixin meglumine or firocoxib. Transepithelial resistance of ischemic-injured jejunum from horses treated with flunixin meglumine was significantly lower than in saline- or firocoxib-treated horses. Lipopolysaccharide permeability across ischemic-injured mucosa was significantly increased in horses treated with flunixin meglumine. Treatment did not affect epithelial restitution. Cyclooxygenase-1 was constitutively expressed and COX-2 was upregulated after 2 hours of ischemia. Thromboxane B2 concentration decreased with flunixin meglumine treatment but increased with firocoxib or saline treatment. Flunixin meglumine and firocoxib prevented an increase in PGEM concentration after surgery.
Conclusions and Clinical Relevance—Flunixin meglumine retarded mucosal recovery in ischemic-injured jejunum, whereas firocoxib did not. Flunixin meglumine and firocoxib were effective visceral analgesics. Firocoxib may be advantageous in horses recovering from ischemic intestinal injury.
Abstract
OBJECTIVE
To investigate effects of body condition on permeability of intestinal mucosa in horses.
ANIMALS
13 horses (7 obese and 6 lean) from 8 to 15 years of age.
PROCEDURES
Body condition score was assessed, and an oral sugar test (OST) was performed to evaluate glucose and insulin dynamics. Horses were allowed a 2-week diet acclimation period and were then euthanized. Tissue samples were collected from the jejunum, ileum, cecum, pelvic flexure, right dorsal colon, and rectum. Mucosal permeability was assessed by measuring transepithelial resistance and lipopolysaccharide (LPS) flux across tissue samples mounted in Ussing chambers.
RESULTS
5 obese horses and 1 lean horse had evidence of insulin dysregulation, whereas 1 obese and 5 lean horses had no abnormalities in results of the OST. Results for the OST were not available for 1 obese horse. Mucosal transepithelial resistance did not differ in any intestinal segment between obese and lean horses. Obese horses had a significantly higher LPS flux across jejunal mucosa, compared with results for lean horses, but there were no significant differences between obese and lean horses for other intestinal segments.
CONCLUSIONS AND CLINICAL RELEVANCE
Obese horses may have had greater paracellular mucosal permeability of jejunal mucosa to LPS, compared with that for lean horses. This finding was consistent with data for the gastrointestinal mucosa of humans and mice and supported the hypothesis that obese horses may be at higher risk from chronic exposure to increased amounts of LPS, compared with the risk for lean horses.
Abstract
Objective—To determine whether clinically normal dogs have lesions in the pylorus and duodenum and to examine the expression of cyclooxygenase (COX) isoforms in the pylorus and duodenum of these dogs.
Animals—27 clinically normal dogs.
Procedures—Physical examination was performed on clinically normal dogs from animal shelters and research projects; the dogs were then euthanized. After the dogs were euthanized, the pylorus and duodenum were photographed and scored for gross appearance of lesions. Samples were obtained for histologic evaluation and determination of COX expression via western blot analyses. Tissues from the pylorus and duodenum were categorized as normal, inflamed, or eroded on the basis of histologic analysis. Each histologic category of tissue was then evaluated to determine the correlation with gross appearance and COX expression.
Results—Of the 27 dogs, 5 had unremarkable histologic findings in the pylorus and duodenum. Inflammation was found in the pylorus of 10 dogs and in the duodenum of 5 dogs. Epithelial erosion was detected in the pylorus of 1 dog and in the duodenum of 3 dogs. Gross appearance was not significantly correlated with histologic appearance. Expression of COX-1 was not upregulated by inflammation, whereas COX-2 expression was increased by inflammation or erosion.
Conclusions and Clinical Relevance—Dogs that appear to be clinically normal may have underlying gastroduodenal lesions associated with upregulation of COX-2. Because of the inability to determine this during routine physical examination, practitioners should be aware of this potential situation when prescribing COX inhibitors.
Abstract
Objective—To investigate effects of lidocaine hydrochloride administered IV on mucosal inflammation in ischemia-injured jejunum of horses treated with flunixin meglumine.
Animals—24 horses.
Procedures—Horses received saline (0.9% NaCl) solution (SS; 1 mL/50 kg, IV [1 dose]), flunixin meglumine (1 mg/kg, IV, q 12 h), lidocaine (bolus [1.3 mg/kg] and constant rate infusion [0.05 mg/kg/min], IV, during and after recovery from surgery), or both flunixin and lidocaine (n = 6/group). During surgery, blood flow was occluded for 2 hours in 2 sections of jejunum in each horse. Uninjured and ischemia-injured jejunal specimens were collected after the ischemic period and after euthanasia 18 hours later for histologic assessment and determination of cyclooxygenase (COX) expression (via western blot procedures). Plasma samples collected prior to (baseline) and 8 hours after the ischemic period were analyzed for prostanoid concentrations.
Results—Immediately after the ischemic period, COX-2 expression in horses treated with lidocaine alone was significantly less than expression in horses treated with SS or flunixin alone. Eighteen hours after the ischemic period, mucosal neutrophil counts in horses treated with flunixin alone were significantly higher than counts in other treatment groups. Compared with baseline plasma concentrations, postischemia prostaglandin E2 metabolite and thromboxane B2 concentrations increased in horses treated with SS and in horses treated with SS or lidocaine alone, respectively.
Conclusions and Clinical Relevance—In horses with ischemia-injured jejunum, lidocaine administered IV reduced plasma prostaglandin E2 metabolite concentration and mucosal COX-2 expression. Coadministration of lidocaine with flunixin ameliorated the flunixin-induced increase in mucosal neutrophil counts.