Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Véronique A. Lacombe x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To characterize insulin-sensitive glucose-transporter (GLUT-4) protein in equine tissues and determine effects of exercise and glucose administration on content of GLUT-4 protein in equine skeletal muscle.

Sample Population—Tissue samples from 9 horses.

Procedure—Western blot analyses were performed on crude membrane preparations of equine tissues to characterize GLUT-4. In a crossover, randomized study, horses were strenuously exercised for 3 consecutive days and then administered 13.5% glucose or isotonic saline (0.9% NaCl; control) solution, IV, at similar infusion rates for 12.1 hours. Samples were collected from the middle gluteal muscle before and after exercise and 10.1 hours after completion of an infusion and used for measurements of glycogen concentration and total content of GLUT-4 protein.

Results—Immunoblot analyses detected specifically immunoreactive bands for GLUT-4 in insulin-sensitive tissues. Content of GLUT-4 protein in skeletal muscle increased significantly by 27.3 and 12.3% 22.2 hours after exercise for control and glucose groups, respectively. Intravenous infusion of glucose resulted in a significantly higher rate of glycogenesis, compared with results for the control group (mean ± SD, 3.98 ± 0.61 and 1.47 ± 0.20 mmol/kg/h, respectively). Despite enhanced glycogenesis, we did not detect an increase in content of GLUT-4 protein after glucose infusion, compared with values after exercise.

Conclusions and Clinical Relevance—GLUT-4 protein was expressed in equine skeletal and cardiac muscles. Exercise increased total content of GLUT-4 protein in skeletal muscle, and replenishment of muscle glycogen stores after glucose infusion attenuated the exercise-induced increase in the content of GLUT-4 protein in equine skeletal muscle. (Am J Vet Res 2003;64:1500–1506)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine neurologic indications associated with abnormal results for computed tomography (CT) imaging of the head of horses affected by neurologic disorders.

Design—Retrospective case series.

Animals—57 horses.

Procedures—Signalment, history, clinical abnormalities, and clinicopathologic findings were obtained from medical records of horses examined because of neurologic disorders, and precontrast and postcontrast CT images of the head were reviewed. Data were analyzed by use of univariate and multivariate logistic regression.

Results—For a horse with abnormal mentation, odds of having abnormal results for CT imaging of the head was 30 times (95% confidence interval [CI], 2.36 to 374.63) the odds for a similar horse without abnormal mentation. For a horse with cranial nerve deficits, odds of having abnormal results for CT imaging of the head was 11 times (95% CI, 1.00 to 127.96) the odds for a similar horse without cranial nerve deficits. For a horse with seizure-like activity, odds of having abnormal results for CT imaging of the head was 0.05 times (95% CI, 0 to 0.90) the odds for a similar horse without seizures.

Conclusions and Clinical Relevance—These results suggested that alterations in consciousness and cranial nerve deficits were strong predictors of abnormal CT findings for the head of affected horses. Thus, CT can be a useful complementary diagnostic test in horses with these neurologic deficits. In contrast, alternative diagnostic tests (eg, electroencephalography and magnetic resonance imaging) should be considered in horses with seizure-like activity that do not have head trauma or cranial nerve deficits.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objectives—To determine effects of feeding diets with various soluble-carbohydrate (CHO) content on rates of muscle glycogen synthesis after exercise in horses.

Animals—7 fit horses.

Procedures—In a 3-way crossover study, horses received each of 3 isocaloric diets (a high soluble CHO [HC] diet, a low soluble CHO [LC] diet, or a mixed soluble CHO [MC] diet). For each diet, horses were subjected to glycogen-depleting exercise, followed by feeding of the HC, LC, or MC diet at 8-hour intervals for 72 hours.

Results—Feeding the HC diet resulted in a significantly higher glycemic response for 72 hours and significantly greater muscle glycogen concentration at 48 and 72 hours after exercise, compared with results after feeding the MC and LC diets. Muscle glycogen concentrations similar to baseline concentrations were detected in samples obtained 72 hours after exercise in horses when fed the HC diet. Rate of glycogen synthesis was significantly higher when horses were fed the HC diet, compared with values when horses were fed the MC and LC diets. Glycogen synthase activity was inversely related to glycogen content. Protein content of glucose transporter-4 was the lowest at 72 hours after exercise when horses were fed the HC diet.

Conclusions and Clinical Relevance—Muscle glycogen synthesis was slower after glycogen-depleting exercise in horses, compared with synthesis in humans. Feeding HC meals after strenuous exercise hastened replenishment of muscle glycogen content, compared with results for feeding of LC and MC diets, by increasing availability of blood glucose to skeletal muscles. (Am J Vet Res 2004;65:916–923)

Full access
in American Journal of Veterinary Research