Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Udeni B. R. Balasuriya x
- Refine by Access: All Content x
Abstract
Objective—To determine whether it is safe to vaccinate pregnant or postpartum mares with a commercial modified-live virus vaccine against equine viral arteritis (EVA).
Design—Randomized controlled study.
Animals—73 mares and their foals.
Procedures—Mares were vaccinated during mid gestation, during late gestation, or 2 or 3 days after parturition with a commercial modified-live virus vaccine or were not vaccinated. Foaling outcomes were recorded, and serum, blood, milk, and nasopharyngeal samples were obtained.
Results—All mares vaccinated during mid gestation foaled without any problems; 21 of 22 mares in this group had antibody titers against EAV at the time of foaling. Of the 19 mares vaccinated during late gestation, 3 aborted; antibody titers against EAV were detected in 13 of 15 mares from which serum was obtained at the time of foaling. All postparturient vaccinates were seronegative at foaling; all of them seroconverted after vaccination. No adverse effects were detected in any of their foals.
Conclusions and Clinical Relevance—When faced with a substantial risk of natural exposure to EAV, it would appear to be safe to vaccinate healthy pregnant mares up to 3 months before foaling and during the immediate postpartum period. Vaccinating mares during the last 2 months of gestation was associated with a risk of abortion; this risk must be weighed against the much greater risk of widespread abortions in unprotected populations of pregnant mares naturally infected with EAV.
Abstract
Objective—To compare growth characteristics of strains of equine arteritis virus (EAV) of differing virulence to horses in rabbit kidney (RK)-13 cells and equine endothelial cells (EECs) cultured from the pulmonary artery of a foal.
Sample Population—13 strains of EAV, including 11 field isolates of differing virulence to horses; the highly virulent, horse-adapted Bucyrus strain; and the modified-live virus (MLV) vaccine derived from it.
Procedure—The growth characteristics of the 13 strains were compared in EECs and RK-13 cells. Viral nucleoprotein expression, cytopathogenicity, and plaque size were compared to determine whether growth characteristics of the 13 strains were predictive of their virulence to horses.
Results—Cytopathogenicity, viral nucleoprotein expression, and plaque size induced by all 13 viruses were similar in RK-13 cells, whereas virulent strains of EAV caused significantly larger plaques in EECs than did the avirulent strains of EAV. Paradoxically, the highly attenuated MLV vaccine and 1 field isolate of EAV caused plaques in EECs that were larger than those caused by any of the other viruses, and sequence analysis confirmed the field isolate of EAV to be indistinguishable from the MLV vaccine.
Conclusions and Clinical Relevance—With the notable exception of the MLV vaccine, growth of the various strains of EAV in EECs was predictive of their individual virulence to horses. Thus, EECs provide a relevant and useful model to further characterize determinants of virulence and attenuation amongst strains of EAV. (Am J Vet Res 2003;64:779–784)