Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Toshiyuki Takahashi x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether race history, including the number of races and total race distance, was associated with risk of superficial digital flexor tendon (SDFT) injury in Thoroughbred racehorses in Japan.

Design—Matched case-control study.

Animals—515 Thoroughbred racehorses (case horses) that sustained an SDFT injury during training or racing in Japan during 2002 and 951 horses (control horses) without SDFT injury that were matched with case horses on the basis of age and month of the latest race.

Procedure—Variables related to race history were compared between case and control horses by means of conditional logistic regression.

Results—The odds of SDFT injury increased as mean race distance and mean body weight at race time increased. Compared with females that had never competed in steeplechase races, males regardless of steeplechase race history and females that had competed in steeplechase races had higher odds of SDFT injury.

Conclusions and Clinical Relevance—Results suggest that longer mean distance per race, heavier mean body weight at race time, steeplechase experience, and sex (male) increased the risk of SDFT injury in Thoroughbred racehorses. (J Am Vet Med Assoc 2004;225:90–93)

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To quantify fatigue-induced electromyographic changes in hind limb muscles in horses.

ANIMALS 8 Thoroughbreds.

PROCEDURES The left and right hind limb longissimus dorsi, tensor fasciae latae, gluteus medius, and biceps femoris muscles were instrumented for surface electromyography. Hoof strain gauges were attached to confirm stride cycle. Each horse was galloped on a treadmill (grade, 3%) at a constant speed (12.6 to 14.7 m/s) to achieve fatigue after approximately 360 seconds. Before and after this exercise, the horses were trotted at 3.5 m/s. At 30-second intervals during galloping an integrated electromyography (iEMG) value for a stride and the median frequency of muscle discharge (MF) in each limb were measured. The mean of stride frequency (SF), iEMG value, and MF of 5 consecutive strides at the start and end of galloping for the lead and trailing limbs were compared. For trotting, these variables were compared at 60 seconds before and after galloping.

RESULTS The mean ± SD value for SF decreased over time (2.14 ± 0.06 to 2.05 ± 0.07 stride/s). In both the lead and trailing limbs, fatigue decreased the iEMG values of the gluteus medius and biceps femoris muscles but not those of the longissimus dorsi and tensor fasciae latae muscles. The MF did not change for any muscle during galloping with fatigue. The SF, iEMG value, and MF did not change during trotting with fatigue.

CONCLUSIONS AND CLINICAL RELEVANCE Fatigue induced by high-speed galloping decreased the gluteus medius and biceps femoris muscles' iEMG values in Thoroughbreds. Fatigue of these less fatigue-resistant hind limb muscles would affect a horse's speed.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To determine cardiorespiratory responses of Thoroughbreds to uphill and downhill locomotion on a treadmill at identical gradients.

ANIMALS 5 highly trained Thoroughbred geldings.

PROCEDURES Thoroughbreds were exercised for 2-minute intervals on a treadmill at 1.7, 3.5, 6.0, 8.0, and 10.0 m/s at a 4% incline, 0% incline (horizontal plane), and 4% decline in random order on different days. Stride frequency, stride length, and cardiopulmonary and O2-transport variables were measured and analyzed by means of repeated-measures ANOVA and Holm-Šidák pairwise comparisons.

RESULTS Horses completed all treadmill exercises with identical stride frequency and stride length. At identical uphill speeds, they had higher (vs horizontal) mass-specific O2 consumption (mean increase, 49%) and CO2 production (mean increase, 47%), cardiac output (mean increase, 21%), heart rate (mean increase, 11%), and Paco 2 (mean increase, 1.7 mm Hg), and lower Pao 2 (mean decrease, 5.8 mm Hg) and arterial O2 saturation (mean decrease, 1.0%); tidal volume was not higher. Downhill locomotion (vs horizontal) reduced mass-specific O2 consumption (mean decrease, 24%), CO2 production (mean decrease, 23%), and cardiac output (mean decrease, 9%). Absolute energy cost during uphill locomotion increased linearly with speed at approximately twice the rate at which it decreased during downhill locomotion.

CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that for Thoroughbreds, downhill locomotion resulted in a lower energy cost than did horizontal or uphill locomotion and that this cost changed with speed. Whether eccentric training induces skeletal muscle changes in horses similar to those in humans remains to be determined.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine prevalence of atrial fibrillation (AF) immediately after racing among racehorses that finished well behind the winners and examine potential risk factors for AF in these horses.

Design—Case-control study.

Animals—39,302 racehorses representing 404,090 race starts in races sanctioned by the Japan Racing Association between 1988 and 1997.

Procedure—Horses that finished ≥ 4 (turf races) or 5 (dirt races) seconds behind the winner or that did not complete the race were examined for AF within 5 minutes after the race. Logistic regression and χ 2 analyses were used to determine whether sex, age, race distance, race surface, year, or development of epistaxis was associated with development of AF.

Results—Estimated minimum frequency of AF was 0.03% (123 instances of AF following 404,090 race starts), and estimated minimum prevalence of AF among racehorses was 0.29% (115 horses with AF among 39,302 racehorses). Estimated frequency of AF among horses that finished slowly or did not finish was 1.39% (120 instances of AF among 8,639 examinations), and estimated prevalence of AF in horses that finished slowly was 1.23% (92 instances of AF among 7,500 horses) or 1.01% when only the first time a horse finished slowly was considered (76 instances of AF among 7,500 horses). Atrial fibrillation was paroxysmal in most horses. Among horses that finished slowly, 4-year-old and older horses and horses that raced on turf were more likely to develop AF.

Conclusions and Clinical Relevance—Results suggest that the likelihood of AF among racehorses that finish slowly is related to age and racing surface. (J Am Vet Med Assoc 2003;223:84–88)

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine the frequency of epistaxis during or after racing among racehorses and identify factors associated with development of epistaxis.

Design—Retrospective study.

Sample Population—247,564 Thoroughbred and 4,045 Anglo-Arab race starts.

Procedure—Race start information (breed, age, sex, racing distance, and race type) was obtained for Thoroughbred and Anglo-Arab horses racing in Japan Racing Association-sanctioned races between 1992 and 1997. All horses that raced were examined by a veterinarian within 30 minutes of the conclusion of the race; any horse that had blood at the nostrils was examined with an endoscope. If blood was observed in the trachea, epistaxis related to exercise-induced pulmonary hemorrhage (EIPH) was diagnosed.

Results—Epistaxis related to EIPH was identified following 369 race starts (0.15%). Frequency of EIPHrelated epistaxis was significantly associated with race type, age, distance, and sex. Epistaxis was more common following steeplechase races than following flat races, in older horses than in horses that were 2 years old, following races ≤ 1,600 m long than following races between 1,601 and 2,000 m long, and in females than in sexually intact males. For horses that had an episode of epistaxis, the recurrence rate was 4.64%.

Conclusions and Clinical Relevance—Results suggested that frequency of EIPH-related epistaxis in racehorses is associated with the horse's age and sex, the type of race, and the distance raced. The higher frequency in shorter races suggests that higher intensity exercise of shorter duration may increase the probability of EIPH. (J Am Vet Med Assoc 2001;218:1462–1464)

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine whether warm-up exercise at different intensities alters kinetics and total contribution of aerobic power to total metabolic power in subsequent supramaximal exercise in horses.

Animals—11 horses.

Procedures—Horses ran at a sprint until fatigued at 115% of maximal oxygen consumption rate ( O 2max), beginning at 10 minutes following each of 3 warm-up protocols: no warmup (NoWU), 1 minute at 70% O 2max (moderate-intensity warm-up [MoWU]), or 1 minute at 115% O 2max (high-intensity warm-up [HiWU]). Cardiopulmonary and blood gas variables were measured during exercise.

Results—The O 2 was significantly higher in HiWU and MoWU than in NoWU throughout the sprint exercise period. Blood lactate accumulation rate in the first 60 seconds was significantly lower in MoWU and HiWU than in NoWU. Specific cardiac output after 60 seconds of sprint exercise was not significantly different among the 3 protocols; however, the arterial mixed-venous oxygen concentration difference was significantly higher in HiWU than in NoWU primarily because of decreased mixed-venous saturation and tension. Run time to fatigue following MoWU was significantly greater than that with NoWU, and there was no difference in time to fatigue between MoWU and HiWU.

Conclusions and Clinical Relevance—HiWU and MoWU increased peak values for O 2 and decreased blood lactate accumulation rate during the first minute of intense exercise, suggesting a greater use of aerobic than net anaerobic power during this period.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To determine whether racehorses undergoing regular exercise at 2 intensities or stall rest during a period of reduced training (detraining) would differentially maintain their cardiopulmonary and oxygen-transport capacities.

ANIMALS 27 Thoroughbreds.

PROCEDURES Horses trained on a treadmill for 18 weeks underwent a period of detraining for 12 weeks according to 1 of 3 protocols: cantering at 70% of maximal rate of oxygen consumption ( o 2max) for 3 min/d for 5 d/wk (canter group); walking for 1 h/d for 5 d/wk (walk group); or stall rest (stall group). Standardized treadmill exercise protocols (during which cardiopulmonary and oxygen-transport variables were measured) were performed before and after detraining.

RESULTS Mass-specific o 2max, maximal cardiac output, and maximal cardiac stroke volume of all groups decreased after 12 weeks of detraining with no differences among groups. After detraining, arterial-mixed-venous oxygen concentration difference did not decrease in any group, and maximal heart rate decreased in the walk and stall groups. Run time to exhaustion and speeds eliciting o 2max and maximal heart rate and at which plasma lactate concentration reached 4mM did not change in the canter group but decreased in the walk and stall groups.

CONCLUSIONS AND CLINICAL RELEVANCE Horses following the cantering detraining protocol maintained higher values of several performance variables compared with horses following the walking or stall rest protocols. These results suggested that it may be possible to identify a minimal threshold exercise intensity or protocol during detraining that would promote maintenance of important performance-related variables and minimize reductions in oxygen-transport capacity in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate sevoflurane as an inhalation anesthetic for thoracotomy in horses.

Animals—18 horses between 2 and 15 years old.

Procedure—4 horses were used to develop surgical techniques and were euthanatized at the end of the procedure. The remaining 14 horses were selected, because they had an episode of bleeding from their lungs during strenuous exercise. General anesthesia was induced with xylazine (1.0 mg/kg of body weight, IV) followed by ketamine (2.0 mg/kg, IV). Anesthesia was maintained with sevoflurane in oxygen delivered via a circle anesthetic breathing circuit. Ventilation was controlled to maintain PaCO2 at approximately 45 mm Hg. Neuromuscular blocking drugs (succinylcholine or atracurium) were administered to eliminate spontaneous breathing efforts and to facilitate surgery. Cardiovascular performance was monitored and supported as indicated.

Results—2 of the 14 horses not euthanatized died as a result of ventricular fibrillation. Mean (± SD) duration of anesthesia was 304.9 ± 64.1 minutes for horses that survived and 216.7 ± 85.5 minutes for horses that were euthanatized or died. Our subjective opinion was that sevoflurane afforded good control of anesthetic depth during induction, maintenance, and recovery.

Conclusions and Clinical Relevance—Administration of sevoflurane together with neuromuscular blocking drugs provides stable and easily controllable anesthetic management of horses for elective thoracotomy and cardiac manipulation. (Am J Vet Res 2000;61:1430–1437)

Full access
in American Journal of Veterinary Research