Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Thilo Pfau x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To investigate the influence of simulated contraction of the cricoarytenoideus dorsalis (CAD) muscle on the 3-D motion of the arytenoid cartilage.

Sample Population—5 larynges from equine cadavers.

Procedures—Serial computed tomographic scans of each larynx were conducted at 7 incremental forces simulating contraction of medial, lateral, and combined bellies of the left CAD muscle. Three-dimensional reconstruction of radiopaque markers placed at anatomic landmarks on the left arytenoid and cricoid cartilages enabled quantification of marker displacement according to a Cartesian coordinate system. Rotation (roll, pitch, and yaw) of dorsal and ventral arytenoid planes was calculated relative to a plane formed by the coordinates of 3 markers on the cricoid cartilage by use of Euler angles.

Results—Displacement and rotational data showed that rocking motion occurs throughout arytenoid abduction and most of the rotational component is attributable to pitch; greater pitch was associated with action of the lateral belly. Roll of the ventral arytenoid plane was principally associated with action of the medial belly, which counteracted the tendency of the arytenoid cartilage to rotate medially into the rima glottidis lumen. The distance between markers on the arytenoid cartilage was not constant during contraction because of slight deformation of the corniculate process of the arytenoid cartilage, therefore indicating that the arytenoid cartilage is not a rigid body during abduction.

Conclusions and Clinical Relevance—Arytenoid cartilage abduction was dependent on the rocking motion elicited by the lateral belly of the CAD muscle; therefore, laryngoplasty suture placement should mimic the action of the lateral, rather than the medial, muscle belly. (Am J Vet Res 2010;71:1003–1010)

Full access
in American Journal of Veterinary Research


Objective—To determine whether body lean angle could be predicted from circle radius and speed in horses during lunging and whether an increase in that angle would decrease the degree of movement symmetry (MS).

Animals—11 medium- to high-level dressage horses in competition training.

Procedures—Body lean angle, head MS, and trunk MS were quantified during trotting while horses were instrumented with a 5-sensor global positioning system–enhanced inertial sensor system and lunged on a soft surface. Speed and circle radius were varied and used to calculate predicted body lean angle. Agreement between observed and predicted values was assessed, and the association between lean angle and MS was determined via least squares linear regression.

Results—162 trials totaling 3,368 strides (mean, 21 strides/trial) representing trotting speeds of 1.5 to 4.7 m/s and circle radii of 1.8 to 11.2 m were conducted in both lunging directions. Differences between observed and predicted lean angles were small (mean ± SD difference, −1.2 ± 2.4°) but significantly greater for circling to the right versus left. Movement symmetry values had a larger spread for the head than for the pelvis, and values of all but 1 MS variable changed with body lean angle.

Conclusions and Clinical Relevance—Body lean angle agreed well with predictions from gravitational and centripetal forces, but differences observed between lunging directions emphasize the need to investigate other factors that might influence this variable. For a fair comparison of MS between directions, body lean angle needs to be controlled for or corrected with the regression equations. Whether the regression equations need to be adapted for lame horses requires additional investigation.

Full access
in American Journal of Veterinary Research



To identify the degree of left arytenoid cartilage (LAC) abduction that allows laryngeal airflow similar to that in galloping horses, assess 2-D and 3-D biomechanical effects of prosthetic laryngoplasty on LAC movement and airflow, and determine the influence of suture position through the muscular process of the arytenoid cartilage (MPA) on these variables.


7 equine cadaver larynges.


With the right arytenoid cartilage maximally abducted and inspiratory airflow simulated by vacuum, laryngeal airflow and translaryngeal pressure and impedance were measured at 12 incremental LAC abduction forces (0% to 100% [maximum abduction]) applied through laryngoplasty sutures passed caudocranially or mediolaterally through the left MPA. Cross-sectional area of the rima glottis and left-to-right angle quotient were determined from photographs at each abduction force; CT images were obtained at alternate forces. Arytenoid and cricoid cartilage markers allowed calculation of LAC roll, pitch, and yaw through use of Euler angles on 3-D reconstructed CT images.


Translaryngeal pressure and impedance decreased, and airflow increased rapidly at low abduction forces, then slowed until a plateau was reached at approximately 50% of maximum abduction force. The greatest LAC motion was rocking (pitch). Suture position through the left MPA did not significantly affect airflow data. Approximately 50% of maximum abduction force, corresponding to a left arytenoid angle of approximately 30° and left-to-right angle quotient of 0.79 to 0.84, allowed airflow of approximately 61 ± 6.5 L/s.


Ex vivo modeling results suggested little benefit to LAC abduction forces > 50%, which allowed airflow similar to that reported elsewhere for galloping horses.

Full access
in American Journal of Veterinary Research